Epigenetic Mechanisms in Autism Spectrum Disorders

Janine LaSalle, Ph.D Medical Microbiology and Immunology Rowe Program in Human Genetics UC Davis School of Medicine

Autism and Epigenetics What's the connection?

Autism

- Complex developmental disorder that usually appears in first three years of life
- Not a single disorder but a spectrum of neurodevelopmental disorders characterized by:
 - Impairments in social interactions and communication
 - Impairments in language
 - Restrictive and repetitive interests and behaviors

Autism

- <u>Regressive autism</u>: apparently normal infancy followed loss of recpirocal social interactions, loss of language, gain of sterotypical behaviors around 18 mo to 4 years of age
- <u>Early onset autism:</u> no apparent loss of language or social interactions
- Male bias for autism 4:1; Asperger's 10:1

Autism most likely results from alterations in brain development and maturation due to a combination of genetic and environmental factors

Genetics of Autism

- Strong genetic component to risk for autism:
 - Family studies: 50x greater risk for sibs of children with autism compared to the general population.
 - Identical twin studies
 MZ concordance = 60-90%
 DZ concordance = 0-10 %

 $- H^2 > 90\%$

But genetic basis is likely complex; multiple approaches are needed

Loci identified by genome scans that might increase risk of autism

Nature Reviews | Genetics

Folstein and Rosen-Sheidley, 2001, Nature Reviews Genetics

New mutations and copy number variations in autism

• The majority of autism cases are a result of *de novo* mutations, occurring first in the parental germ line.

• For reasons yet to be determined, female offspring are considerably more resistant to displaying the effects of such mutations than are males.

• Resistant individuals, but females in particular, carrying a mutation may marry and, with a probability of 50%, pass the mutation to their offspring, who will display the symptoms with high probability if male.

Is autism prevalence on the rise?

California's Developmental Services System Schechter and Grether, 2008

Associated milestones in the United States:

- * 1991: Hib and hepatitis B virus vaccines recommended for infants and children
- † 1993: Licensure of first formulation of Hib vaccine (PRP-T) that contained no thimerosal
- ‡ 1999: Joint AAP-USPHS recommendation that thimerosal be removed as soon as possible from childhood vaccines
- § 2001: All new lots of routine childhood vaccines (other than influenza vaccine) contain no more than traces of thimerosal
- II 2002: Expiration dates for residual lots of routine childhood vaccines (other than influenza vaccine) that contain more than traces of thimerosal

Is this an increase in diagnosis, prevalence, or both?

Rett Syndrome

- Rett syndrome is the only one of the pervasive developmental disorders with a single known genetic cause
 - DSM IV Pervasive Developmental Disorders:
 - Autism
 - Asperger syndrome
 - Childhood disintegrative disorder
 - Rett syndrome
 - PDD-NOS

Rett Syndrome

- X-linked dominant, ~80% MECP2 mutation
- ~1/10,000 in US population
- Neurodevelopmental regression around 6 to 18 months of age
- MECP2 encodes a known epigenetic factor, methyl CpG binding protein 2

Rett syndrome involves epigenetics at 2 levels

Clinical Progression of Rett syndrome

YEARS 0.5 1 2 3 4 5 10 20 >20
Normal development
Developmental stagnation Microcephaly Growth arrest Hypotonia
Rapid regression Autistic features
Loss of hand skills, speech, and social interaction
Hand stereotypies Mental retardation Motor abnormalities
Seizures
Respiratory abnormalities
Stationary stage Scoliosis
Autonomic dysfunction
Anxiety
Late motor deterioration Decrease/loss of mobility Parkinsonian features

Chahrour and Zoghbi, Neuron, 2007

MeCP2 is a marker for mature neurons in the post-natal mammalian brain

Sytox Green Anti-MeCP2

MeCP2 appears to have multiple roles in regulating gene expression in neurons

Activity dependent gene regulation

Regulation of alternative splicing

Chahrour and Zoghbi, Neuron, 2007

Genetic and environmental interactions in regressive autism What Rett syndrome reveals

Etiologic environmental exposures in autism could be causitive (thalidamide, valproate, Rubella), or additive to genetic susceptibility (likely to be more common)

Long-term effects from in utero exposures could alter epigenetic mechanisms, leading to behavior and cognitive dysfunction in the child and adult

Epigenetics

DNA methylation

Chromatin structure

Inherited and reversible modifications to nucleotides or chromosomes that do not change the sequence but can alter gene expression

Histone modifications

Spatial organization of chromosomes

Interphase SH

Kosak and Groudine, 2004

Examples of epigenetic mechanisms X chromosome inactivation

Calico cats are females and are mosaics of cells expressing black and orange coat colors

Figure 7–77. Molecular Biology of the Cell, 4th Edition.

Rett syndrome

Rett girls are mosaics of cells expressing mutant *MECP2*

Examples of epigenetic mechanisms

Parental Imprinting

Epigenetics <u>Examples of epigenetic mechanisms</u> Tissue-specific and developmental differences in gene expression

Embryonic neuronal nucleus

Mature adult neuronal nucleus

DNA dye (DAPI) of mouse cortical neurons

Figure 7–1. Molecular Biology of the Cell, 4th Edition.

Examples of epigenetic mechanisms Environmental effects on gene expression

Bisphenol A (BPA)

Bisphenol A (BPA) + folic acid

Dolinoy et al, PNAS, 2007

Epigenetic disorders on the autism spectrum

- The imprinted disorders Prader-willi and Angelman syndromes are on the autism spectrum.
 - 2-42% of AS and PWS cases have comorbid autism, depending on study
 - Uniparental disomy cases of PWS may be more frequently autistic
- Maternal 15q11-13 duplications are the most common cytogenetic cause of autism (1-3%)

Angelman and Prader-Willi syndromes

Imprinted disorders caused by 15q11-13 deletions or deficiency (~1/20,000)

AS: Maternal 15q11-13 deletion, paternal disomy, maternal UBE3A mutation, imprinting defects

PWS: Paternal 15q11-13 deletion, maternal disomy, imprinting defects

Parental Imprinting and Mammalian Reproductive Technologies

- Many cloned livestock exhibit "large offspring syndrome" due to dysregulated expression of Igf2.
- Cloned mice and embryonic stem cells have many epigenetic defects in imprinted genes.
- Human ES cell lines exhibit altered methylation patterns compared to normal human tissue.
- Human children from in vitro fertilization (IVF) have increased rates of Angelman and Beckwith-Wiedemann syndromes.

The Rosetta Stone approach to "decoding" the complex genetics and epigenetics in autism

Evidence for epigenetic overlap between autism, RTT, and AS

- MeCP2 expression is significantly reduced in 79% of autism post-mortem brain samples
- Methylation of the *MECP2* promoter correlates with reduced expression in male autism brain samples
- GABRB3 expression (15q11-13) is significantly reduced in 56% of autism post-mortem brain samples
- Biallelic expression levels of GABRB3 are epigenetically dysregulated in Rett and autism postmortem brain
- Homologous pairing of 15q11-13 in mature neurons is deficient in RTT, autism, and AS

Ravi Nagarajan GGG student

Amber Hogart GGG student

Karen Thatcher GGG student

MeCP2 binds to the imprinting control region of 15q11-13 and regulates UBE3A and GABRB3 expression

ChIP-chip analysis of MeCP2 binding at *SNRPN* and 62 additional sites within 13 MB of 15q11-13 *Yasui et al., 2007*

MECP2 mutation or deficiency does not alter imprinted expression, but reduces levels of *UBE3A* and *GABRB3 Samaco et al, 2005*

Reduced MeCP2 in autism frontal cortex correlates with aberrant methylation

Nagarajan et al, Epigenetics, 2006

Identification of a methylation boundary element upstream of *MECP2* bound by CTCF

Nagarajan et al, Autism Research, in revision

GABRB3 expression positively correlates with MeCP2

Significant correlation between MeCP2 and GABRB3 protein levels suggests that MeCP2 positively regulates *GABRB3* expression

Nonimprinted *GABRB3* is epigenetically dysregulated in a subset of autism and Rett syndrome brains

Hogart et al, Hum. Mol. Genet., 2007

What is the future for epigenetics and autism?

Defining precise genetic and environmental risk factors and develop tests for precise epigenetic alterations

Future directions examining environmental pollutants on epigenetics in neurodevelopment

BDE-47 PCB-95 GABRB3 MeCP2 Social behavior UBE3A Cognition Soizures

Animal model component

Меср2^{308/+} *Меср2*^{308/у}

Human subject component

Epigenetic interaction of MECP2 and organic pollutants in neurodevelopment

Perinatal exposure BDE-47

4 w prior/ 3 w in utero/ 3 w lactation

0.03 mg/kg/day 1 mg/kg/day vehicle control

C57BI6/J

12 different treatment x genotype categories

X

Mecp2^{+/+} *Mecp2*^{308/+} *Mecp2*^{+/y} *Mecp2*^{308/y}

Test perinatally exposed mice for social and cognitive behavior Test mouse brains for epigenetic changes in MeCP2, UBE3A, global DNA methylation and histone modifications, etc

Behavioral Testing

Growth & Reflex Assessment

Ultrasonic Vocalization Measurement

Sociability Test

Social Dyadic Interaction

Acoustic Startle and Pre-Pulse Inhibition test

Social Transmission of Food Preference

Elevated Plus Maze

Locomotor Activity Integra

Spatial Memory and Learning in the Water Maze

Preliminary evidence of epigenetic changes with perinatal BDE-47 exposure

CHILDHOOD AUTISM RISKS FROM GENETICS AND THE ENVIRONMENT

BeInCHARGE@ucdavis.edu

Irva Hertz-Picciotto, PI

Comprehensive, collaborative evaluation of autism

- Medical evaluations
- Environmental exposures/epidemiology
- Behavior and neuropsychology
- Genomics
- Brain structure/imaging
- Immune function
- Epigenetics

DNA samples from four diagnostic categories

- Early onset autism
- Regressive autism
- Developmental delay
- Typically developing controls

Parental DNA also available

Epigenetic analyses on human samples

CHARGE blood DNA samples

- X chromosome inactivation
- DNA methylation at chromosome 15 imprinting control regions
- *MECP2* promoter methylation

Human postmortem brain samples

- X chromosome inactivation
- DNA methylation at chromosome 15 imprinting control regions
- *MECP2* promoter methylation
- MeCP2 and GABRB3 expression

Correlate epigenetic changes with PBDE tissue levels

No evidence for X chromosome inactivation skewing differences between mothers of males with autism

	n=	number of uninformative samples (%)	avg age (y) ^a	avg small allele size (bp) ^a	avg large allele size (bp) ^a	avg % skewing ^{a,b}	inactive allele size (bp) ^{a,c}	% mothers with < 5% or > 95% skewing ^a	% mothers with < 15% or > 85% skewing ^a
Typical Development	23	5 (22)	33	274	286	53	280	11	17
Delayed Development	24	3 (13)	32	275	287	45	282	0	10
Autism	27	2 (7)	35	276	288	46	284	8	16
ASD	25	3 (12)	36	277	286	60	280	9	18

Notes:

^a - for informative samples

^b - percent of cells with small allele inactive

^c - average of allele sizes (bp) of the alleles that are inactivated > 50%

Nagarajan et al, Autism Research, in revision

-

PBDEs protective for XCI skewing?

Acknowledgements

LaSalle Lab **Dag Yasui** Susan Swanberg Mike Gonzales Karen Thatcher Sailaja Peddada Raman Nagarajan **Amber Hogart** Malaika Singleton **Christy Ballard Roxanne Vallero Katherine Patzel** Michelle Martin Haley Scoles **Joanne Suarez** Amy George **Brandon Woods** Stephanie Tring

<u>Collaborators, UCD</u> Isaac Pessah Irva Hertz-Picciotto Robert Berman Mari Golub Robin Hansen Judy Van de Water <u>Collaborators</u> Wendy Robinson, UBC Paul Kostiniak, U Buffalo

Financial Support NIH, 1R01 HD41462, 1R01 HD48799 1R01 ES015171

<u>Human tissue samples</u> CHARGE Autism Tissue Program, Maryland and Harvard Brain Banks