Reconsideration of Nine Chemicals Listed under Proposition 65 as Known to Cause Reproductive Toxicity #### **Chemicals Listed via the Labor Code Mechanism:** tert-Amyl methyl ether (TAME) p,p'-Oxybis(benzenesulfonyl hydrazide) 2-Chloropropionic acid 1,3,5-Triglycidyl-s-triazinetrione N,N'-Dimethylacetamide (DMAC) 4-Vinyl-cyclohexene (VCH) 2-Ethylhexanoic acid Vinyl cyclohexene dioxide (VCD) **Ethyl-tert-butyl ether (ETBE)** Office of Environmental Health Hazard Assessment California Environmental Protection Agency September 2013 #### Background Proposition 65¹ requires the State to publish a list of chemicals known to cause cancer or reproductive toxicity. This list must be updated at least once a year. Reproductive toxicity includes developmental toxicity, and female and male reproductive toxicity. Chemicals added to the list as known to cause reproductive toxicity affect one or more of these endpoints. The chemicals covered in this document (See Table 1 below) were added to the list as known to cause reproductive toxicity because they were identified by reference as such in the California Labor Code. Proposition 65 thus required their inclusion on the list, as discussed in greater detail below. There are three additional ways for a chemical to be added to the Proposition 65 list: 1) The Developmental and Reproductive Toxicant Identification Committee (DART IC) finds that the chemical has been clearly shown to cause reproductive toxicity. 2) An organization designated as an "authoritative body" by the DART IC has identified it as causing reproductive toxicity². 3) An agency of the state or federal government requires that it be labeled or identified as causing reproductive toxicity. #### Reason for Reconsideration of Listing Because of recent changes in federal regulations, the chemicals identified in Table 1 no longer meet the criteria for inclusion on the list on the basis of the Labor Code mechanism. These chemicals are being presented to the DART IC for a decision as to whether they have been clearly shown through scientifically valid testing according to generally accepted principles to cause reproductive toxicity. If the Committee makes that determination, the chemical will remain on the list. The nine chemicals were added to the list on the basis of a Threshold Limit Value (TLV) developed by the American Conference of Governmental Industrial Hygienists (ACGIH) that was based on reproductive or developmental toxicity. All the chemicals in Table 1 were listed as known to cause reproductive toxicity based on their ACGIH TLV. The TLV provided a basis for listing via the Labor Code because: ¹ The Safe Drinking Water and Toxic Enforcement Act of 1986: Health and Safety Code section 25249.5 *et seq.*, passed by voter initiative ² Title 27, California Code of Regulations, section 25306(I) The authoritative bodies are: U.S. Environmental Protection Agency, U.S. Food and Drug Administration, National Institute for Occupational Safety and Health, National Toxicology Program solely as to final reports of the National Toxicology Program's Center for Evaluation of Risks to Human Reproduction, and International Agency for Research on Cancer solely as to transplacental carcinogenicity - Proposition 65 provides that the list of chemicals known to the state to cause reproductive toxicity "shall include at a minimum those substances identified by reference in Labor Code Section 6382(b)(1) and those substances identified additionally by reference in Labor Code Section 6382(d)³". - California Labor Code Section 6382(d) further provides that "...any substance within the scope of the federal Hazard Communication Standard (29 C.F.R. Section 1910.1200) is a hazardous substance subject to this chapter". - Until 2012, the federal Hazard Communication Standard (HCS) incorporated TLVs as a definitive source for establishing that a chemical is hazardous. In March 2012, the federal HSC was amended to remove reference to ACGIH TLVs as a mandatory basis for establishing that chemicals are hazardous. Consequently, a TLV based on reproductive or developmental toxicity no longer provides the basis for listing a chemical as known to the state to cause reproductive toxicity under Propostion 65. Table 1. Chemicals under Reconsideration for Listing as Known to Cause Reproductive Toxicity | Chemical | CAS Number | Basis for TLV | |---------------------------------------|------------|------------------------------| | tert-Amyl methyl ether (TAME) | 994-05-8 | Developmental toxicity | | tert-Amyr metrlyr ether (TAME) | 994-05-0 | ("embryo/fetal damage") | | 2-Chloropropionic acid | 598-78-7 | Male reproductive toxicity | | 2-Ciliotopiopioriic acid | 390-70-7 | ("male reproductive damage") | | N,N-Dimethyl acetamide | 127-19-5 | Developmental toxicity | | (DMAC) | 127-19-3 | ("embryo/fetal damage") | | 2-Ethylhexanoic acid | 149-57-5 | Developmental toxicity | | 2-Ethylnexamole acid | 149-37-3 | ("teratogenic effects") | | Ethyl-tert-butyl ether (ETBE) | 637-92-3 | Male reproductive toxicity | | Emyr-tert-batyr emer (ETBE) | 037-92-3 | ("testicular damage") | | p,p'-Oxybis(benzenesulfonyl | 80-51-3 | Developmental toxicity | | hydrazide) | 00-31-3 | ("teratogenic effects") | | 1,3,5-Triglycidyl-s-triazinetrione | 2451-62-9 | Male reproductive toxicity | | 1,5,5-1 ligiyolayi-s-tilazilletilolle | 2431-02-9 | ("male reproductive damage") | ³ HSC section 25249.8(a) #### Table 1 continued | Chemical | CAS Number | Basis for TLV | |--|------------|---| | 4-Vinyl-cyclohexene (VCH) | 100-40-3 | Female and male reproductive toxicity ("female & male reproductive damage") | | Vinyl cyclohexene dioxide
(4-vinyl-1-cyclohexene
diepoxide; VCD) | 106-87-6 | Female and male reproductive toxicity ("female & male reproductive damage") | #### Reconsideration Procedure These chemicals are being brought to the DART IC because they do not meet the criteria for inclusion on the list by any of the listing mechanisms outlined above. The Office of Environmental Health Hazard Assessment (OEHHA) has, through a contract with the Sheldon Margen Public Health Library at the University of California, Berkeley, conducted literature searches to identify studies that potentially provide information on the reproductive toxicity of each chemical. The searches covered three major reproductive toxicity endpoints, namely developmental toxicity and male and female reproductive toxicity. The databases searched and parameters used in these searches are described in Appendix A. The results of these searches were reviewed by OEHHA staff and all studies that provided data on reproductive toxicity were identified. For each chemical the design parameters and results of these studies on male reproductive, female reproductive and developmental toxicity are summarized in a table, except as specified below. The complete study reports for these chemicals have been provided to the DART IC and are available to the public upon request. Relevant studies were identified for all but one of the chemicals. No relevant data on reproductive or developmental toxicity were identified for p,p'-oxybis(benzenesulfonyl hydrazide). For the chemicals 4-vinyl-cyclohexene (VCH) and vinyl cyclohexene epoxide (VCD), a very large body of relevant data was identified. VCD is a metabolite of VCH. Most of the data on both of these chemicals relate to female reproductive toxicity, as these compounds are used as model compounds for this type of toxicity. Due to the volume of references on these chemicals, two recent reviews of the female reproductive toxicity of VCH and VCD published in peer-reviewed scientific journals are provided in Appendix B, rather than the data being tabulated. The relatively small number of studies relevant to developmental and male reproductive toxicity of VCD and VCH have been summarized in tables. All of the complete study reports on both chemicals for male reproductive, female reproductive and developmental toxicity have been provided on CD to the DART IC and are available to the public upon request. For completeness, the original ACGIH documents supporting development of the TLVs have also been provided to the DART IC on CD. These documents were not used in the process that resulted in listing under Proposition 65 of the chemicals identified in Table 1. Rather, identification of a TLV based in whole or in part on a reproductive toxicity endpoint in the document "Threshold Limit Values for Chemical Substances and Physical Agents in the Environment, American Conference of Governmental Industrial Hygienists (ACGIH)" (latest edition) resulted in the listing. Relevant entries from that document also have been provided on CD to the committee. #### tert-Amyl Methyl Ether (TAME) #### Molecular Formula: C₆H₁₄O tert-Amyl methyl ether is mostly used as an oxygenate for gasoline. It is added to increase octane enhancement and to raise the oxygen content in gasoline to help reduce emissions. #### **Relevant Studies** Berger, T. and C. M. Horner (2003). "In vivo exposure of female rats to toxicants may affect oocyte quality". Reprod Toxicol 17(3): 273-81. Tyl, R. W., C. B. Myers, M. C. Marr, P. A. Fail, J. C. Seely, B. Elswick, A. James and F. Welsch (2003). "Two-generation reproductive toxicity study of inhaled tertiary amyl methyl ether (TAME) vapor in CD rats". J Appl Toxicol **23**(6): 397-410. Welsch, F., B. Elswick, R. A. James, M. C. Marr, C. B. Myers and R. W. Tyl (2003). "Developmental toxicity evaluation of inhaled tertiary amyl methyl ether in mice and rats". J Appl Toxicol **23**(6): 387-95. ### tert-Amyl Methyl Ether (TAME) | | | | nental Parameters | | | | Results | s (Effects/NOEL/LOEL) | | |-----------------------|---
---|--|---|---------------------------------|---|--|--|----------| | Reference | Chemical
(Source/
Purity/
Preparation) | Animal Model
(Species/
Strain/Sex/
Age)
N | Study Design | Exposure
(Route/
Period/
Frequency/
Vehicle) | Doses or
Concen-
trations | Endpoints Assessed
Parents/ Offspring | Parents | Offspring | Comments | | Welsch et
al. 2003 | TAME (Chevron Research and Technology. Richmond, CA) Purity = 98.9% | CD-1 Mice. Pregnant female, 11wks old 25/group | Developmental toxicity study. Dams sacrificed on GD17 and fetuses dissected for physical examination. | Inhalation;
11 days
(GD6-16);
6h/day
Filtered
fresh air
vehicle | 0 , 250,
1500,
3500 ppm | Parents: Dam toxicity: survival, organ wt, BW Offspring: Fetal survival, organ wt, developmental landmark, ossification, physical evaluation, and neurodevelopment | 4 deaths (16%) at high dose; 1 on each day: GD 6,7,8,9 Increased liver wt. at 1500, 3500 ppm Reduced BW: 27% at 3500 ppm p<0.01 | 40% Reduced fetal BW/ litter at 3500 ppm (p<0.01); increased incidence of late fetal death at 3500 ppm; extra rib(s) on lumbar vertebra no. 1 in all groups, misaligned sternebrae at 0, 250 and 1500 ppm; reduced ossification in lumbar centrum at 1500 ppm and in thoracic centrum and pubis at 3500 ppm and floating extra rib cartilage at 1500 ppm Increased fetal external malformations: Cleft palate 18% of litters at 1500 ppm (NS) and 31.6% of litters at 3500 ppm (p<0.01) LOEL=1500 ppm; enlarged lateral ventricles of the fetal cerebrum at 3500 ppm NOEL = 250 ppm | | | | As above | CD (Sprague-
Dawley) rats;
Female pregnant:
10 wks old
25/group | Developmental
toxicity study.
Dams
sacrificed on
GD20 | Inhalation;
14 days
(GD6-19);
6h/day
Filtered
fresh air
vehicle | 0, 250,
1500,
3500 ppm | Parents: Dam survival, BW Offspring: Fetal survival, organ wt., developmental landmark, ossification, physical evaluation, and neurodevelopment | Reduced BW:
7% at 1500 ppm
(p<0.05)
22% at 3500
ppm (p<0.01) | No significant increase in fetal death in any treatment group. 5% reduction in fetal BW/ litter at 3500 ppm (p<0.01) | | ACGIH TLV DART Chemicals for Reconsideration # tert-Amyl Methyl Ether (continued) | | | E | xperimental Param | eters | | | (Fff. | Results
ects/NOEL/LOEL) | | |--------------------|--|---|---|--|--|--|--|---|----------| | Reference | Chemical
(Source/
Purity/
Preparation) | Animal
Model
(Species/
Strain/Sex
/Age)
N | Study Design | Exposure
(Route/Period/
Frequency/
Vehicle) | Doses/
Concen-
trations | Endpoints Assessed
Parents/ Offspring | Parents | Offspring | Comments | | Tyl et al.
2003 | TAME (Chevron Research and Technology. Richmond, CA) Purity= 98.8% | CD (Sprague- Dawley) rats, virgin females and virgin males; 35 days old 30/sex/ group | Two generation reproductive study. F1 and F2 offspring weaned on PND 28. Exposure of F1 and F2 started on PND29. Pregnant dams were not exposed beginning on gd 20. Dams with litters were not exposed on PND 0 through PND 4. | Inhalation for 6 h/day, 5 days/ week, during the prebreeding exposure periods (10 weeks) and the postmating holding period (males). During mating, gestation and lactation of F1 and F2 litters, exposures were 6 h/day, 7 days/ week. | 0 (filtered
fresh air),
250, 1500,
3000 ppm | Parents: Dam toxicity: survival, organ wt, BW and feed consumption Offspring: Fetal survival, BW, vaginal patency and preputial separation for F1. Anogenital distance at birth (PND 0) for F2. Reproductive organs of animals suspected of reduced fertility were subjected to histopathological evaluation. | Reduced BW during lactation at 3000 ppm (p<0.05). Systemic Toxicity As above | F1: reduced BW throughout lactation in both sexes at 3000 ppm (p<0.05); in females only at 1500 ppm on PND 7 and 14, in both sexes at 1500 ppm on PND 21 and 28 (p<0.05). F2: deceased survival index at 3000 ppm at PND 4 and 21. Decreased BW throughout lactation in both sexes at 3000 ppm (p<0.05); and on PND 14 and 21 at 1500 ppm (p<0.05). The NOAEL for offspring toxicity was 250 ppm. Reproductive Toxicity Reduced estrous cycle length (4.22 vs 3.96 days, p<0.05) and increased gestational length (22 vs 22.3, p<0.05) at 1500 ppm. F0: Increased % abnormal sperm: 3.1% at 1500 ppm and 5.5% (p<0.05) at 3000 ppm, (control=2.3%) | | # tert-Amyl Methyl Ether (continued) | | | E | xperimental Param | eters | | | (Effe | Results
ects/NOEL/LOEL) | | |---------------------------|--|--|--|---|-----------------------------------|----------------------|-------------------|--|----------| | Reference | Chemical
(Source/
Purity/
Preparation) | Animal
Model
(Species/
Strain/Sex
/Age)
N | Study Design | Exposure
(Route/Period/
Frequency/
Vehicle) | Doses/
Concen-
trations | Endpoints Assessed | Systemic Toxicity | Reproductive Toxicity | Comments | | Berger and
Horner 2003 | TAME (Aldrich Chemical Co). (purity not specified) | Sprague-
Dawley
rats,
males,
100 days
old,
provided
semen
(collected
from
dissected
epididy-
mides)
Females,
28–45
days old,
provided
ovocites. | In vivo treatment of females/In vitro fertilization study Exposed females were induced to ovulate and the ovocites collected and incubated with diluted sperm for 20 h. | Drinking water Females were exposed for 2 weeks prior to oocyte harvest. | 0 or 0.3% in
drinking
water | Oocyte fertilization | N/A | Reduced percentage of oocytes fertilized following exposure of females to 0.3% TAME (65% versus 84% in controls; p<0.05); and decreased penetrated sperm/oocyte (1.53 versus 1.84) for TAME-exposed females, S.E.M. = 0.20; p < 0.10 | | #### 2-Chloropropionic Acid #### Molecular Formula: C₃H₅ClO₂ 2-Chloropropionic acid is a chemical intermediate used in the manufacture of pharmaceuticals and pesticides. In the two studies by Yount et al. described in the table below, 2-chloropropionic acid as a neutral sodium salt, known as sodium 2-chloropropionate, was administered to rat testicular cells and rats. 2-Chloropropionic acid is a weak acid, so there will be an equilibrium between the acid and its anion (2-chloropropionate) in solution. Therfore, administration of 2-chloropropionate (in salt form) exposes an animal to 2-chloropropionic acid. #### Relevant Studies Yount, E. A. and R. A. Harris (1982a). "Ketone-Body
and Acetate Formation from Oleate by Isolated Rat Testicular Cells". <u>Arch of Biochem Biophysics</u> **217**(2): 503-11. Yount, E. A., S. Y. Felten, B. L. Oconnor, R. G. Peterson, R. S. Powell, M. N. Yum and R. A. Harris (1982b). "Comparison of the metabolic and toxic effects of 2-chloropropionate and dichloroacetate." <u>J Pharmacol Exper Ther</u> 222(2): 501-508. # 2-Chloropropionic Acid | | | Exp | erimental Paramete | ers | | | | esults
NOEL/LOEL) | | |-----------------------|---|---|--|--|-------------------------------|--------------------------------|----------------------|--|---| | Reference | Chemical
(Source/ Purity/
Preparation) | Animal Model
(Species/
Strain/Sex/
Age) | Study Design | Exposure
(Route/Period/
Frequency/
Vehicle) | Doses/
Concen-
trations | Endpoints
Assessed | Systemic
Toxicity | Reproductive
Toxicity | Comments | | Yount et al.
1982a | DL-2-chloro-
proprionic acid
(used as a neutral
solution of its
sodium salt)
Aldrich Chemical
Company | Isolated testicular cells from Wistar rats from Harland Laboratories (Indianapolis, IN) Testes from one adult rat, or pooled testes from 8 or more 24- to 27-day old rats, or 40 14-day old rats | In vitro cell culture Cells were 97%+ viable as estimated by trypan blue exclusion The study examined metabolic effects of 2-chloroproprionic acid oxidation, as well as some general features of energy metabolism. | Incubation of isolated cells 60 minutes in culture | Unspecified | Metabolism in testicular cells | N/A | 2-chloropropionate did not activate the pyruvate dehydrogenase complex in the testes which did not increase the production of ¹⁴ CO ₂ from [U- ¹⁴ C]glucose and diminish lactate and pyruvate accumulation. | Since all results obtained with 2-chloropropionic acid were negative, the focus became the capacity of isolated testicular cells to produce ketone bodies. Cellular composition of the isolated cell preparations was not defined. | ### 2-Chloropropionic Acid (continued) | | | Ехреі | rimental Parameter | rs . | | | | esults
/NOEL/LOEL) | | |------------------------|--|--|-------------------------------------|--|---|---|----------------------|---|--| | Reference | Chemical (Source/
Purity/
Preparation) | Animal Model
(Species/
Strain/Sex/
Age) | Study Design | Exposure
(Route/Period/
Frequency/
Vehicle) | Doses/
Concen-
trations | Endpoints
Assessed | Systemic
Toxicity | Reproductive
Toxicity | Comments | | Yount et al.,
1982b | 2-chloropropionate acid Aldrich Chemical Company (Converted by Yount et al. to the neutral sodium salt of 2-chloropropionic acid) | Male Wistar rats from Harlan Industries or Cox Laboratory Supply Company 6 weanling rats/group | Prolonged
toxicity – 12
weeks | Oral via feed for
12 weeks Food consumption measured daily, body weights assessed weekly | 0.04 mol/kg concentration in feed Approximate dosage: varied from 4 mmol/kg/d at the beginning of the study to about 2.5 mmol/kg/d at the end of the study | Testes and epididymal weight Testicular germ cells | N/A | Weight of testes plus epididymis were significantly less than control values. Ratio of weight of testes plus epididymis to the whole body weight was significantly smaller in the treated group compared with controls. All 6 treated rats showed evidence of testicular maturation arrest and degeneration of germ cells, some of which contained enlarged or multiple nuclei. | Multiple studies were reported in this reference. Prolonged toxicity study had data relevant to male reproductive toxicity. | #### N,N-Dimethylacetamide (DMAC) #### Molecular Formula: C₄H₉NO N,N-Dimethylacetamide is used as a solvent, a chemical intermediate, a carrier ingredient in pharmaceuticals, and in the production of synthetic polymers used in clothing and textiles. #### **Relevant Studies** - Anderson, I. and L. M. Morse (1966). "The influence of solvent on the teratogenic effect of folic acid antagonist in the rat". Exp Mol Pathol **5**(2): 134-45. - Du Pont Haskell Laboratories (1997). Dimethylacetamide (DMAC): Developmental toxicity study in Sprague-Dawley rats. HL-1997-00203. - Ferenz, R. L. and G. L. Kennedy, Jr. (1986). "Reproduction study of dimethylacetamide following inhalation in the rat". Fundam Appl Toxicol **7**(1): 132-7. - Johannsen, F. R., G. J. Levinskas and J. L. Schardein (1987). "Teratogenic response of dimethylacetamide in rats". <u>Fundam Appl Toxicol</u> **9**(3): 550-6. - Kennedy, G. L. (2012). "Toxicology of dimethyl and monomethyl derivatives of acetamide and formamide: a second update". <u>Crit Rev Toxicol</u> **42**(10): 793-826. DuPont Company. (1983). Inhalation study in rats. Unpublished results. - Kennedy, G. L., Jr. (1986). "Biological effects of acetamide, formamide, and their monomethyl and dimethyl derivatives". <u>Crit Rev Toxicol</u> **17**(2): 129-82. Monsanto (1973a). Unpublished data reviewed in Kennedy (1986): ref 219c, p156 - Monsanto (1973b). Unpublished data reviewed in Kennedy (1986): ref 219d, p.156 - Monsanto (1973c). Unpublished data reviewed in Kennedy (1986): ref 219b, p.156Klimisch, H. J. and J. Hellwig (2000). "Developmental toxicity of dimethylacetamide in rabbits following inhalation exposure". <u>Hum Exp Toxicol</u> **19**(12): 676-83. - McGregor, D. B., (1981). "Tier II Mutagenic Screening of 13 NIOSH Priority Compounds", NIOSH contract, Inveresk Research International, Musselburgh, Scotland, NTIS. - Merkle, J. and H. Zeller (1980). "[Studies on acetamides and formamides for embryotoxic and teratogenic activities in the rabbit (author's transl)]". Arzneimittelforschung **30**(9): 1557-62. - Miller, W. L., D. W. Frank and M. J. Sutton (1981). "Antifertility activity of DMA in hamsters: protection with a luteotropic complex". <u>Proc Soc Exp Biol Med</u> **166**(2): 199-204. - Organization for Economic Cooperation and Development (OECD) (2001). N,N-dimethylacetamide (DMAC) CAS No:127-19-5. <u>SIDS Initial Assessment Report</u> for 13 SIAM. - Monsanto (1973c). Unpublished data reviewed in OECD (2001): ref 55, p. 78. - Okuda, H., T. Takeuchi, H. Senoh, H. Arito, K. Nagano, S. Yamamoto and T. Matsushima (2006). "Developmental toxicity induced by inhalation exposure of pregnant rats to N,N-dimethylacetamide". <u>J Occup Health</u> **48**(3): 154-60. - Solomon, H. M., R. L. Ferenz, G. L. Kennedy, Jr. and R. E. Staples (1991). "Developmental toxicity of dimethylacetamide by inhalation in the rat". <u>Fundam Appl Toxicol</u> **16**(3): 414-22. - Stula, E. F. and W. C. Krauss (1977). "Embryotoxicity in rats and rabbits from cutaneous application of amide-type solvents and substituted ureas". <u>Toxicol Appl Pharmacol</u> **41**(1): 35-55. - Thiersch, J. B. (1962). "Effects of acetamindes and formamides on the rat litter in vitro". J Reprod Fertil **4**: 219. - Valentine, R., M. Hurtt, S. Frame and G. L. Kennedy, Jr. (1997). "Inhalation toxicology of dimethylacetamide (DMAC) in mice and rats: age-related effects on lethality and testicular injury". <u>Inh Toxicol</u> **9**: 141-56. - Von Kreybig, T., R. Preussmann and I. Kreybig (1969). "Chemische konstiution und teratogene Workung bei der ratte. II. N-alkylharnstoffe, N-alkylsulfonamide, N,N-dialkylacetamide, N-methylthioacetamide, cloracetamide.". <u>Arzneim. Forsch</u> **19**: 1073-6. - Wang, G. M., L. D. Kier and G. W. Pounds (1989). "Male fertility study on N,N-dimethylacetamide administered by the inhalation route to Sprague-Dawley rats". <u>J Toxicol Environ Health</u> **27**(3): 297-305. # N,N-Dimethylacetamide (DMAC) | | | Ехр | erimental Paramet | ers | | | | sults
IOEL/LOEL) | | |-------------------------------|--|---
---|---|---|--|------------------------------|---|---| | Reference | Chemical
(Source/
Purity/
Preparation) | Animal Model
(Species/
Strain/Sex/Age)
N | Study Design | Exposure
(Route/Period/
Frequency/
Vehicle) | Doses/
Concen-
trations | Endpoints
Assessed | Parents | Offspring | Comments | | Thiersch
1962 | DMAC;
source/purity
not stated | Female rats No information on strain or group size provided | Preimplantation
embryotoxicity
study | i.p, one
injection
one dose
between GD 4
and14 with
pregnancy
outcome; one
dose GD 2, 3,
4 or 5 with
embryo exam | 2 g/kg | Embryos flushed
from uterus and
examined GD
2,3,4,5 | No information provided | Loss of litter, one injection
between GD4 and 14.
Abnormal embryo
development, one injection
between GD2 and 5. | Brief report
with no data
or statistics | | Anderson
and Morse
1966 | DMAC;
Source/purity
not stated | Holtzman rats
3-5/group | DMAC used as
a solvent in a
study of
pyrimethamine | s.c. injection
GD 10, or
10,11 or
10,11,12;
No control
injection | DMAC 6, 12,
18%; high
dose about
500 mg/kg | Embryos examined within 3 days of dosing | No information provided | Absorbed and necrotic fetuses, 12 & 18% dose, GD10,11 and 12; 2% resorptions at 6% dose | Data table,
no statistics | | Von
Kreybig et
al. 1969 | DMAC;
chemicals
purchased or
synthesized/
purity not
stated | CD rats
2-5/group | A group of
acetamides was
studied.
Fetal exam 24
or 48 h after
treatment; gross
fetal exam only | injection
GD 13
GD14,15 (1000
mg/kg only) | 600, 800,
1000 mg/kg | No information provided | Not stated; LD50 ~3000 mg/kg | Dose related increase in malformations on GD13,14; no malformations GD15; digit and tail malformations; Dose related increase in resorptions and fetal deaths | Data table;
no statistics
Article in
German;
some data in
later review;
described as
i.p. by Stula
& Krauss | | | | Ex | perimental Param | eters | | | Resu
(Effects/NO | | | |-----------------------------------|---|---|------------------------------|--|---|-------------------------|-------------------------|--|--| | Reference | Chemical
(Source/
Purity/
Preparation) | Animal Model
(Species/
Strain/Sex/Age)
N | Study Design | Exposure
(Route/Period
/Frequency/
Vehicle) | Doses/
Concentrations | Endpoints
Assessed | Parents | Offspring | Comments | | Monsanto
unpublishe
d 1973a | DMAC
Source and
purity not
described | Rats
No information on
strain or group
size provided | Reproductive toxicity study | Dermal | 120, 250, 500,
1000 mg/kg/d
Control not stated | No information provided | No information provided | Reduced fertility, smaller
litters, decreased fetal
weight, decreased
sternal ossification, 1000
mg/kg/d | Original report not available. Described in Kennedy 1986 (ref 219c, p156) Text description only; no data; no statistics | | Monsanto
unpublishe
d 1973b | DMAC
Source and
purity not
described | Rats
No information on
strain or group
size provided | Developmental toxicity study | Dermal | 120, 250, 500
1000 mg/kg/d
GD6-15
Control not stated | No information provided | No information provided | Decreased fetal weight,
increased resorptions,
skeletal defects, 1000
mg/kg/d | Original report
not available.
Described in
Kennedy 1986
(ref 219b, p.
156)
Text
description
only; no data;
no statistics | | | | Ехре | erimental Parame | ters | | | Resu
(Effects/NO | | | |----------------------------------|---|---|---------------------------|--|---|--|--|---|---| | Reference | Chemical
(Source/
Purity/
Preparation) | Animal Model
(Species/
Strain/Sex/Age)
N | Study Design | Exposure
(Route/Period/
Frequency/
Vehicle) | Doses/
Concentrations | Endpoints
Assessed | Parents | Offspring | Comments | | Monsanto
unpublished
1973c | DMAC
Source and
purity not
described | Rabbits, New
Zealand white
Group size not
stated | Developmental toxicity | Dermal
GD6-18 | 120, 250, 500
mg/kg/d
Control not
stated | No information provided | No maternal toxicity; NOEL 500 mg/kg/d | Decreased fetal body
weight; decreased
survival; increased sternal
deviations; 2 gross
malformations; 500
mg/kg/d; NOEL 250
mg/kg/d | Original report
not available.
Described in
Kennedy
1986 (ref
219d, p.156
and OECD
2001 (ref 55,
p. 78)
Text
description
only; no data;
no statistics | | Stula and
Krauss 1977 | DMAC;
Du Pont/ <
2% impurities | SD rats
220-250g
3-9
pregnancies/group | Developmental toxicity | Dermal;
GD9, or
10&11, or
11&12, or
12&13; | 0, 600, 1200,
2400 mg/kg-d; | Maternal weight change during dosing Fetal exam GD20 gross, visceral and skeletal | Maternal weight loss (1%) during dosing 1200 mg/kg-d GD 10&11; less weight gain, dose-dependent. | Increased embryomortality; dose dependent to 100% at 2400 mg/kg, GD10&11; 3 fetuses (1 litter) with encephalocele, 1 fetus with anasarca 1200 mg/kg, GD 10&11; lower fetal weight, dose dependent, GD10&11. | Results interpreted by authors as fetal effects with no maternal effects Data table; no statistics | | | | New Zealand
rabbits,
4 kg
3-9
pregnancies/group | Developmental
toxicity | Dermal
GD 8-16. | 200 mg/kg-d | Fetal exam
GD30
gross, visceral
and skeletal | No measures reported | No developmental effects | | | | | | Experimental Paramet | ers | | | | Results
s/NOEL/LOEL) | | |---------------------------|---|---|---|---|---|---|---|---|--| | Reference | Chemical
(Source/
Purity/
Preparation) | Animal Model
(Species/
Strain/Sex/Age)
N | Study Design | Exposure
(Route/Period/
Frequency/
Vehicle) | Doses/
Concentrations | Endpoints
Assessed | Parents | Offspring | Comments | | Merkle and
Zeller 1980 | DMAC BASF purity not stated | Rabbits
10-12/group
23-33 weeks old | Developmental
toxicity
FDA 1966
guidelines | Oral, gavage
GD 6-18 | 0, 94, 282, 470
mg/kg | Maternal
mortality, food
intake; fetal
mortality,
weight,
teratology
exam | Mortality (17%) in
dams at 470 mg/kg-d
NOEL 282 mg/kg-d;
Reduced food
intake and weight
gain dams NOEL 94
mg/kg-d | 100% resorption, 470 mg/kg; decreased live fetuses, 5/35 fetuses with malformation (cleft palate, fused ribs, microophthalmia), 282 mg/kg; NOEL 94 mg/kg-d | Dose
calculation
from OECD
(2001);
article in
German | | Miller et al.
1981 | DMAC Aldrich purity not stated | Golden hamsters
6/group | Preimplantation
embryotoxicity
study; Fertility trial
after previous
preimplantation
dosing | s.c. or oral
single day
treatment GD 1
to 8. | 2.2, 1.8, 1.4, 1.1,
0.9 g/kg s.c.
(lethal dose 6 mg/kg
s.c.)
2.2, 1.1 g/kg oral | Implantation
sites and ovary
histopathology
on GD8;
Fertility trial 10
days after
treatment | Not
stated | Dose-dependent pregnancy
termination 100% 2.2 g/kg
to 0% 0.9 g/kg, s.c.; 100%
pregnancy termination at
2.2 g/kg oral, 0% 1.1 g oral;
histopathology corpora
lutea; fertility 83% 10 days
after treatment | Complex set
of studies
with good
data
reporting | | McGregor
1981 | DMAC Aldrich >99% pure | Rats
10/group | Dominant lethal 2 females/week, 9 weeks; Sperm abnormalities 5 weeks post dosing (epididymal); positive control | Inhalation
7h/day
5 days | 0, 20, 700 ppm | Body weights
during dosing | Not stated | No dominant lethal effects | Statistics;
Dermal and
i.p dominant
lethal
studies
negative | | | | Ехр | erimental Paran | neters | | | Res
(Effects/NC | | | | |--|---|---|--|---|--------------------------------|--|--|--|--|--| | Reference | Chemical
(Source/
Purity/
Preparation) | Animal Model
(Species/
Strain/Sex/Age)
N | Study
Design | Exposure
(Route/Period/
Frequency/
Vehicle) | Doses/
Concen-
trations | - Endpoints
Assessed | Systemic Toxicity | Reproductive Toxicity | Comments | | | Dupont,
1983
Unpublished
data | DMAC,
source and
purity not
stated | Rats | Subchronic
toxicity | Inhalation
6 h/day, 2 weeks | 228 ppm
(effective
dose) | Not stated | Not stated | Testicular atrophy | Original report not
available.
Reviewed in
Kennedy et al. 2012
Minimal information
from table entry | | | | DMAC,
DuPont/99.9
%pure | CD Rats
20 females
10 males
35 days old | One
generation
reproductive
toxicity study
Ending on | Inhalation
6 h/day
10 weeks
prebreed,
7 h/day breeding, | 0, 30, 100,
300 ppm | Mating, fertility, pregnancy outcome, postnatal growth and | Early weight effect in
males only, 1 female
death 300 ppm; Parental
increased liver weight
NOEL 30 ppm | Enlarged testes males
30 ppm | Haskell labs;
complex results from
M, F and M&F
exposures | | | Ferenz and
Kennedy | | | pnd 21 | gestation, lacation; | | survival | Parents | Offspring | | | | 1986 | | | | Males and
females; also
males/females only
at 300 ppm | | | As above | 2 pups with no tails;
decreased postnatal
weights; Increased liver
weight, decreased pup
weight pnd 21 NOEL
100 ppm | | | | | | Ex | operimental Parame | ters | | | Resi
(Effects/NC | | | |--------------------------|---|---|--|--|-------------------------------|---|--|---|------------------------------------| | Reference | Chemical
(Source/
Purity/
Preparation) | Animal Model
(Species/
Strain/Sex/Age)
N | Study Design | Exposure
(Route/Period/
Frequency/
Vehicle) | Doses/
Concen-
trations | Endpoints
Assessed | Parents | Offspring | Comments | | Johannsen
et al. 1987 | DMAC,
Monsanto/99.
72% pure | CD Rats
12 weeks old
22-25 group | Developmental toxicity | Gavage
GD 6-19
Water vehicle | 0, 65, 160,
400 mg/kg-d | Body weight GD
1,6,9,12,16,20,
Clinical signs.
Sacrifice and
fetal exam
GD20; gross,
visceral, skeletal | No mortality; reduced
maternal body weight gain,
corrected NOEL 160
mg/kg-d | Reduced fetal weight,;
Increased post-
implantation loss,
increased malformation;
reduced ossification; 400
mg/kg/d; distinctive
cardiovascular
malformation
NOEL 160 mg/kg/d | Full report
with statistics | | | DMAC/
Monsanto/99.
8% pure | Rats
male
12/group | Male fertility and developmental toxicity | Inhalation 6
h/day, 5
days/week prior | 0, 40, 116,
386 ppm | Fertility,
GD20 dam
necropsy for | Increased liver weight NOEL40 ppm | No developmental effects | | | Wang et al.
1989 | | | | to and during mating; 43 | | litter size,
resorptions, fetal | Systemic Toxicity | Reproductive Toxicity | | | | | | | exposures prior to
mating, 69 total
exposures | | weight, gross
malformation | As above | No fertility effects | | | | DMAC, du
Pont >99.9%
pure | CD rats
Females 60
days old, males | Developmental toxicity; sacrifice and fetal exam | Inhalation 6 h/day
GD 6-15 | 0, 30, 100,
300 ppm | Body weight GD
1,6,9,13,16,21;
clinical signs | Parents | Offspring | Full statistics reported; table of | | Solomon et
al. 1991 | puro | 90 days old;
25 pregnancies/
group | GD 21 | | | daily: corpora
lutea and
implantation
sites; fetal
weight, gross
and visceral,
skeletal exam. | Reduced body weight gain 300 ppm, NOEL 100 ppm; no effects on corrected maternal body weight gain. | Reduced fetal weights,
300 ppm; no statistically
significant malformation
increase
NOEL 100 ppm | individual
malformations | | | | E | Experimental Param | eters | | | _ | sults
 OEL/LOEL) | | |---------------------------------|---|---|---|---|--|--|--|--|----------| | Reference | Chemical
(Source/
Purity/
Preparation) | Animal Model
(Species/
Strain/Sex/Age)
N | Study Design | Exposure
(Route/Period/
Frequency/
Vehicle) | Doses/
Concentrations | Endpoints
Assessed | Parents | Offspring | Comments | | DuPont
Haskell
Labs 1997 | DMAC
>99% pure | SD rats
24-25/group
Females 64
days old, males,
76 days old | Developmental
toxicity; exam
GD22 | Gavage
GD7-21 | 0, 20, 65, 150,
400 mg/kg bw
Vehicle HPLC
water | Maternal body
weight, food
intake during
pregnancy;
uterine liver
kidney weight
at necropsy;
fetal weight,
gross, visceral,
skeletal exam | Reduced maternal weight
gain 150, 400 mg/kg;
reduced corrected maternal
weight gain 400 mg/kg;
reduced food intake 400
mg/kg; increased liver and
kidney weight, clin chem
effects 400 mg/kg NOEL
65 mg/kg-d | Increased resorption,
reduced litter size, 400
mg/kg; reduced fetal weight,
150 and 400 mg/kg;
anasarca, cardiovascular
and cerebral malformation,
400 and 150 mg/kg;
NOEL 65 mg/kg-d | | | Klimisch
and Hellwig
2000 | DMAC
>99.9%pure | Rabbits
(Himalayan)
23-27 weeks old
15/group main
study
5/group satellite
study | Developmental toxicity Sacrifice and fetal exam GD29 | Inhalation
GD7-19
Main 6 h/day
"Satellite"
16 h/day | 0, 57, 200, 570
ppm | Maternal body
weight
GD0,3,7; clin
signs; gross
and
histopathology,
blood
chemistry, | No maternal toxicity | Decreased fetal and
placental weights, all doses,
no NOEL. Increased
skeletal and soft tissue
variations including
cardiovascular, statistically
significant at 570 ppm;
NOEL 57 ppm | | | | | Ехр | erimental Param | neters | | | (Effec | Results
ts/NOEL/LOEL) | | |--------------------------|---|---|-------------------------|--|---|--|--|--|----------| | Reference | Chemical
(Source/
Purity/
Preparation) | Animal Model
(Species/
Strain/Sex/Age)
N | Study
Design | Exposure
(Route/Period/
Frequency/
Vehicle) | Doses/
Concentrations |
Endpoints
Assessed | Systemic Toxicity | Reproductive Toxicity | Comments | | | DMAC,
Dupont
Fibers, 99.8%
pure | CD-1 mice Male 35 days old 5/group mated after exposure 10/group mated after 14 day recovery. | Sub Chronic
Toxicity | Inhalation 6 h/day, 5 days/wk for 2 weeks. | 0, 30, 100, 310,
490, 760 ppm | Body weights,
Hematology,
organ weights
and
histopathology | Increased mortality,
pubescent mice 490
(20%), 760 ppm (80%);
reduced body weight 700
ppm; clinical signs 490,
760 ppm; increased liver
weights 490 ppm;
decreased lung weights
490 ppm; hepatocellular,
lymphoid and adrenal
pathology. | Reduced relative testes weights
490 ppm; testicular lesions,
atrophy 310, 490, 700 ppm;
epididymal and seminiferous tubule
lesions | | | Valentine
et al. 1997 | As above | CD-1 mice
7 weeks old
9-13/group | As above | As above | 0, 52, 150, 300
480, ppm
(target doses) | Gross lesions at necropsy plus epididymal and testes histopathology, testicular sperm counts | No mortality or clinical signs. | Reduced testes weights at 480 ppm; seminiferous tubule atrophy at 480 ppm; no sperm effects | | | | As above | CD rats
47 days old
9-13 group | As above | As above | 0, 52, 150, 300
480, ppm
(target doses) | Gross lesions at
necropsy plus
epididymal and
testes
histopathology,
testicular sperm
counts | No mortality or clinical signs; reduced weight gain 480 ppm. | No effects reported | | | | | | Experimental Param | neters | | | (Effec | Results
:ts/NOEL/LOEL) | | |----------------------|--|--|------------------------|--|--|---|---|---|----------| | Reference | Chemical
(Source/
Purity/
Preparation) | Animal
Model
(Species/
Strain/Sex/
Age)
N | Study Design | Exposure
(Route/Period/
Frequency/
Vehicle) | Doses/
Concentrations | Endpoints
Assessed | Parents | Offspring | Comments | | Okuda et
al. 2006 | DMAC
Wako Pure
Chemical
Industries
>99.9% pure | CD rats
female
9 weeks old
10/group | Developmental toxicity | Inhalation
6h/day
GD 6-19 | 0, 100, 300,450,
600 ppm (v/v);
vapor
214, 321, 428
mg/kg-d for 300,
450 and 600
ppm | Maternal weights
GD
6,7,9,13,17,20;
necropsy GD20,
liver enzymes
and hisopath;
fetal exam, gross,
visceral, skeletal | Decreased maternal
body weight 450 and 600
ppm; increased maternal
relative liver weight 300,
450, 600 ppm; maternal
liver histopathology 450,
600 ppm.
NOEL 100 ppm | Decreased fetal weight 300, 450, 600 ppm, decreased live male fetuses 600 ppm, Increased visceral and skeletal malformation, 450, 600 ppm; gross, (anasarca) 600 ppm; cardiovascular, malformation (ventricular septal defect, persistent truncus arteriosus) 450 and 600 ppm; skeletal (fused vertebrae, skull) 450, 600 ppm; NOEL 100 ppm | | #### 2-Ethylhexanoic Acid #### Molecular Formula: C₈H₁₆O₂ 2-Ethylhexanoic acid is used as a chemical intermediate and for manufacture of resins used for baking enamels, lubricants, detergents, flotation aids, and corrosion inhibitors. The chemical is also used as a catalyst for polyurethane foaming, for solvent extraction, and for dye granulation. #### Relevant Studies - Bui, L. M., M. W. Taubeneck, J. F. Commisso, J. Y. Uriu-Hare, W. D. Faber and C. L. Keen (1998). "Altered zinc metabolism contributes to the developmental toxicity of 2-ethylhexanoic acid, 2-ethylhexanol and valproic acid". Toxicology **126**(1): 9-21. - Collins, M. D., W. J. Scott, S. J. Miller, D. A. Evans and H. Nau (1992). "Murine teratology and pharmacokinetics of the enantiomers of sodium 2-ethylhexanoate". <u>Toxicol Appl Pharmacol</u> **112**(2): 257-65. - Dawson, D. A. (1991). "Additive incidence of developmental malformation for Xenopus embryos exposed to a mixture of ten aliphatic carboxylic acids". <u>Teratology</u> **44**(5): 531-46. - Hauck, R. S., C. Wegner, P. Blumtritt, J. H. Fuhrhop and H. Nau (1990). "Asymmetric synthesis and teratogenic activity of (R)- and (S)-2-ethylhexanoic acid, a metabolite of the plasticizer di-(2-ethylhexyl)phthalate". <u>Life Sci</u> **46**(7): 513-8. - Hendrickx, A. G., P. E. Peterson, R. W. Tyl, L. C. Fisher, L. J. Fosnight, M. F. Kubena, M. A. Vrbanic and G. V. Katz (1993). "Assessment of the developmental toxicity of 2-ethylhexanoic acid in rats and rabbits". Fundam Appl Toxicol **20**(2): 199-209. - Narotsky, M. G., E. Z. Francis and R. J. Kavlock (1994). "Developmental toxicity and structure-activity relationships of aliphatic acids, including dose-response assessment of valproic acid in mice and rats". Fundam Appl Toxicol **22**(2): 251-65. - Pennanen, S., K. Tuovinen, H. Huuskonen and H. Komulainen (1992). "The developmental toxicity of 2-ethylhexanoic acid in Wistar rats". <u>Fundam Appl Toxicol</u> **19**(4): 505-11. - Pennanen, S., K. Tuovinen, H. Huuskonen, V. M. Kosma and H. Komulainen (1993). "Effects of 2-ethylhexanoic acid on reproduction and postnatal development in Wistar rats". Fundam Appl Toxicol **21**(2): 204-12. - Ritter, E. J., W. J. Scott, Jr., J. L. Randall and J. M. Ritter (1987). "Teratogenicity of di(2-ethylhexyl) phthalate, 2-ethylhexanol, 2-ethylhexanoic acid, and valproic acid, and potentiation by caffeine". <u>Teratology</u> **35**(1): 41-6. - Svechnikova, I., K. Svechnikov and O. Soder (2007). "The influence of di-(2-ethylhexyl) phthalate on steroidogenesis by the ovarian granulosa cells of immature female rats". <u>J Endocrinol</u> **194**(3): 603-9. # 2-Ethylhexanoic Acid (EHXA) | | | Ехі | perimental Parame | ters | | | (Effec | Results
cts/NOEL/LOEL) | | |-----------------------|--|---|---|---|---|---|---------------------------------------|---|---| | Reference | Chemical
(Source/ Purity/
Preparation) | Animal Model
(Species/
Strain/Sex/
Age)
N | Study Design | Exposure
(Route/Period/F
requency/
Vehicle) | Doses/
Concen-
trations | Endpoints
Assessed | Parents | Offspring | Comments | | Ritter et al.
1987 | 2-Ethylhexanoic
acid (EHXA)
6.25 and 12.5
mmol solutions | Wistar rats Pregnant females At least 7 litters/group Control: 7 litters 6.25 mmol/kg: 7 litters 12.5 mmol/kg: 10 litters | Pregnant rats were killed on gestation day (GD) 20 and following C-section, implantation sites counted and fetuses processed for teratogenic examination Potentiation of effects with caffeine also examined. | Oral gavage on
GD 12
Vehicle not
stated | EHXA: 0, 6.25, or 12.5 mmol/kg (6.25 mmol/ kg EHXA is equivalent to 1.0 mL/kg) Positive control valproic acid (an isomer of EHXA): 6.25 mmol/kg EHXA 6.25 mmol/kg plus intra-peritoneal (i.p.) injection of 150 mg/kg caffeine | Number of dead or resorbed fetuses, living fetuses weighed and examined for external malformations. Skeletal and visceral effects examined. | No information reported on dams | ↓ Fetal weight noted at 12.5 mmol/kg ↑ % of dead and resorbed fetuses at 12.5 mmol/kg ↑incidence of survivors with hydronephrosis - 20.9 % at 12.5 mmol/kg; 14.4% in valproic acid group. Malformed fetuses: 0.8% and 67.8% for EHXA at 6.25 and 12.5 mmol/kg; 31.5% for caffeine plus EHXA at 6.25 mmol/kg. | EHXA alone had teratogenic effect Caffeine further potentiated EHXA effects, increasing the incidence of fetal malformations ↑ fetal malformations observed in additional groups dosed with DEHP or 2-ethylhexanol (2-EHXO) Caffeine also potentiated the effects of these chemicals. | | Hauck et al.
1990 | 3 different
isomers
tested:
(R)-EHXA 93%
(S)-EHXA 90%
(±)-EHXA 90% | NMRI Mice Pregnant females Group size: Control: 10 (R)-EHXA: 17 (S)-EHXA: 9 (±)-EHXA: 20 (±)-EHXA: 14 | Pregnant mice
were killed on
GD 18 and
number of
implantations,
resorptions, live
and dead
fetuses
examined. | I.p. injection
each morning
and evening on
GD 7 and 8 for
(R)-, (S)- and
first (±)-EHXA
groups.
Single i.p.
injection on GD
8 for second (±)-
EHXA group. | 500 mg/kg per
i.p. injection for
both single-
dose and
multiple dose
groups
Controls
received 3.0
mmol NaCl/kg | Number of implantations, embryolethality (resorptions, live and dead fetuses). Living fetuses were weighed and examined for exencephaly | No information
reported on
dams | (S)-EHXA: No teratogenicity or embryolethality (R)-EHXA: Highly teratogenic and embryotoxic, 59% with exencephaly, \(\psi\) fetal weight (\pmu\). EHXA: Multiple dose -teratogenic, 32% with exencephaly; Single dose - 5% with exencephaly and no effect on fetal weight | | | | | Ехре | erimental Paramet | ters | | | Re | esults (Effects/NOEL/LOEL) | | |------------------------|---|---|--|--|--|---|---|--|--| | Reference | Chemical
(Source/
Purity/
Preparation) | Animal Model
(Species/
Strain/Sex/Age)
N | Study Design | Exposure
(Route/Period/
Frequency/
Vehicle) | Doses/
Concen-
trations | Endpoints
Assessed | Parents | Offspring | Comments | | | EHXA
administered
as sodium 2-
ethylhexanoate
(Na EHA)
Na (±) EHA
>99% pure | SWV mice
no controls,
19 litters for 4
dose groups | Pregnant
females dosed
on specific
days of
gestation to
investigate
neural tube
closure and
exencephaly in
offspring. | Single subcutaneous (s.c.) injection Na (±) EHA on GD 8 or 8.5 Vehicle: Physiological saline (0.9% NaCl) | 807, 864, or
1037 mg/kg
on GD 8
864 mg/kg on
GD 8.5. | Maternal
lethality,
embryolethality,
malformations | ↑ Maternal
lethality at ≥
864 mg/kg | Low incidence of exencephaly (about 10%) on GD8 at 807 and 864 mg/kg 39.5% resorptions on GD 8.5 at 864 mg/kg | Dilution
details of
racemic
solutions
provided | | Collins et al.
1992 | EHXA
administered
as sodium 2-
ethylhexanoate
(Na EHA)
Na (±) EHA
>99% pure | SWV mice. Untreated Controls: 19 litters; Treated: 10 litters C57BL mice Untreated Controls: 22 litters Treated: 11 litters | Pregnant
females of two
strains were
dosed on
specific days of
gestation to
investigate the
induction of
exencephaly
and
embryolethality | Multiple i.p. injections given at various one- half day intervals during some of GDs 7- 10 (presumptive time of neural tube closure) Vehicle: Physiological saline (0.9% NaCI) | SWV &
C57BL:
576 mg/kg x 4
(on GD 7.5, 8,
8.5, 9) | Maternal
lethality,
embryolethality,
malformations | No
information
reported on
dams | SWV: ↑% dead or resorbed (21%); ↑exencephaly (49%) statistically significant C57BL: ↑% dead or resorbed fetuses; ↑ exencephaly (7.3%), though not statistically significant. Resorption rate was 21% | SWV more
sensitive
strain than
C57BL for
induction of
exencephaly | | | EHXA
administered
as sodium 2-
ethylhexanoate
(Na EHA)
Na (±) EHA
>99% pure | SWV mice
No Controls
7-10
litters/group | Pregnant
females dosed
on specific
days of
gestation to
investigate the
most sensitive
gestational
times to induce
exencephaly | Multiple i.p.
injections at
various one-half
day intervals
during GDs 7-10
(presumptive
time of neural
tube closure)
Vehicle: Physio-
logical saline
(0.9% NaCl) | SWV:
576 mg/kg x 3
(on either GD
7, 7.5, 8 or
7.5, 8, 8.5 or
8, 8.5, 9 or
8.5 9, 9.5 or
9, 9.5, 10) | Maternal
lethality,
embryolethality,
malformations | No
information
reported on
dams | The most sensitive time for induction of exencephaly was GDs 8.0, 8.5 and 9.0 Incidence of exencephaly was 44% Resorption rate was 14% | GD 8.0, 8.5,
and 9.0 most
sensitive
period. | | | | Exp | erimental Parame | ters | | | | Results
(Effects/NOEL/LOEL) | Comments | |---------------------------------------|---|---|--|--|---|--|--|--|---| | Reference | Chemical
(Source/
Purity/
Preparation) | Animal Model
(Species/
Strain/Sex/Age)
N | Study Design | Exposure
(Route/Period/F
requency/
Vehicle) | Doses/
Concen-
trations | Endpoints
Assessed | Parents | Offspring | | | Collins et al.
1992
(continued) | EHXA
administered
as sodium 2-
ethylhexanoate
(Na EHA)
Na (±) EHA
Na (S)-EHA
Na (R)-EHA
>99% pure | SWV mice
No Controls
6-10
litters/group | Pregnant
females dosed
to investigate
the most
sensitive
enantiomer to
induce
exencephaly
and
embryolethality | I.P injections at various doses at 3 gestational times- GD 8.0, 8.5 and 9.0 Vehicle: Physiological saline (0.9% NaCl) | Na (±) EHA;
3X 576 mg/kg
Na (S)-EHA;
3X 864 mg/kg
3X 576 mg/kg
Na (R)-EHA;
3X 403 mg/kg
3X 518 mg/kg
3X 576 mg/kg | Maternal
lethality,
embryolethality,
malformations | Maternal
lethality at
3X 864
mg/kg | Na (±) EHA; Resorptions -14% Exencephaly- 44% Na (S)-EHA; Resorptions -12.5% Exencephaly- 0% Na (R)-EHA; Resorptions – 9-20% Exencephaly - 0 - 50% Highest incidence of exencephaly (50%) noted in Na (R)-EHA group | R-
enantiomer
most potent | | Pennanen et
al. 1992 | EHXA
administered
as Na EHA
99.5% pure | Wistar rats 20-21 pregnant females/dose group | Developmental
toxicity study.
Fetuses
examined on
GD 20 | In drinking water
on GD 6-19
Controls
received de-
ionized water | 0, 100, 300 or
600 mg/kg/d | Maternal BW, fetuses examined for external, visceral, and skeletal malformations and variations. | Marginally toxic to the dams at 600 mg/kg/d with body weight ↓by 11% | Fetotoxic at 600 mg/kg/d with a 5-8% ↓ fetal BW in males and females. No effect on number of implantations or live fetuses. Dose dependent ↑ in variations (affected fetuses:2.4%,4.9%, 8.9% and 15.3%). ↑skeletal malformations ≥ 100 mg/kg/d | According
to the
authors,
the
skeleton
appears to
be the main
target | | | | Ex | perimental Param | neters | | | | Results
/NOEL/LOEL) | | |-------------------------|---|--|---|---|--|--|-------------------------|--|----------| | Reference | Chemical
(Source/
Purity/
Preparation) | Animal
Model
(Species/
Strain/Sex/
Age)
N | Study Design | Exposure
(Route/Period/
Frequency/
Vehicle) | Doses/
Concen-
trations | Endpoints Assessed | Parents | Offspring | Comments | | Pennanen et
al. 1993 |
EHXA
administered
as Na EHA
99.5% pure | Wistar rats,
males and
females 24 rats/sex/
dose group | Preconception, gestational, and lactational exposure. | In drinking water. Male rats were exposed for 10 weeks and females for 2 weeks prior to mating, both sexes during the mating period and females during the entire gestation and lactation period. | 0, 100, 300, or 600 mg/kg/d. Controls received plain water. | Examined for external, visceral, and skeletal malformations and variations. | No information reported | Average litter size ↓ by 16% at 600 mg/kg/d. Birth weights of the pups unaffected but BW gain was transiently slower during lactation at 600 mg/kg/d. Several pups appeared abnormal (kinky tail, lethargic, slightly paralyzed legs) and the physical development assessed by several landmarks (opening of eyes, eruption of teeth, hair growth) and reflexes (grip reflex, cliff avoidance) was delayed at 300 and 600 mg/kg/d. | | | | As above | Wistar rats,
males and
females
Group size:
GD4 - 4
GD5 - 6
GD6 - 6
GD7 - 12 | Prenatal dosing. | Single gavage
on either GD 4,
5, 6, or 7.
Water vehicle | 0, 600 mg/kg
Controls
received plain
water. | Examined for external, visceral, and skeletal malformations and variations. Number of implantations counted on GD 10. | No information reported | Delayed postnatal
development in pups.
GD 6 most critical for
implantation, with
resorptions in 80% of
pregnant animals (4/5)
Less severe effects
seen with exposure on
GD 7 | | | | | Ехре | rimental Parame | eters | | | | sults
 OEL/LOEL) | | |--------------------------|---|--|--|--|-------------------------------|---|---|---|----------| | Reference | Chemical
(Source/
Purity/
Preparation) | Animal Model
(Species/
Strain/Sex/
Age)
N | Study
Design | Exposure
(Route/Period/
Frequency/
Vehicle) | Doses/
Concen-
trations | Endpoints Assessed | Parents | Offspring | Comments | | Hendrickx et
al. 1993 | EHXA
99.4% pure | Fischer
F344/Crl/Br rat
Pregnant
females
(147-174g)
25/dose group | Development-
al toxicity
study Dams killed
on GD 21 Litter was the
unit of
comparison | Oral gavage
GD 6-15
Corn oil vehicle | 0, 100, 250,
500 mg/kg-d | Parents Clinical signs, mortality; Maternal BW Food consumption. Gross examination of reproductive organs, corpora lutea count, uterine weight, number fetuses live/dead, resorption sites, maternal liver weight Offspring Fetal external examination, fetal weight, skeletal and visceral examination of fetuses (half of the offspring in each category) | Clinical signs of
toxicity & ocular
discharge in dams
at 500 mg/kg-d only
Maternal LOEL =
500 mg/kg-d;
NOEL = 250 mg/kg-
d | Jossification in fetuses at 250 mg/kg-d J fetal body weight at 500 mg/kg-d Fetal LOEL = 250 mg/kg-d; NOEL = 100 mg/kg-d | | | | As above | New Zealand
White rabbits
Pregnant
females
(2.5-3.5 kg)
15/dose group | Development
al toxicity
study Does killed on
GD 29 Litter was the
unit of
comparison | Oral gavage
GD 6-18
Corn oil vehicle | 0, 25, 125,
250 mg/kg-d | Parents Clinical signs, mortality; Maternal BW (GD 0, 6, 9, 12, 15,18 and 29); Food consumption daily. Gross examination of reproductive organs, corpora lutea count, uterine weight, number fetuses live/dead, resorption sites, maternal liver weight Offspring Fetal external examination, fetal weight, skeletal and visceral examination of fetuses | weight gain at 250 mg/kg-d (after treatment period). Maternal LOEL = 125 mg/kg-d (death and abortion) NOEL = 25 mg/kg-d | No teratogenic effects Some ↓ fetal BW at 250 mg/kg-d (not statistically significant) Developmental NOEL = 250 mg/kg-d | | | | | Exp | erimental Parame | ters | | | Res
(Effects/NO | ults
DEL/LOEL) | | |------------------------|---|---|--|---|-------------------------------|--|--|--|---| | Reference | Chemical
(Source/
Purity/
Preparation) | Animal Model
(Species/
Strain/Sex/
Age)
N | Study Design | Exposure
(Route/Period/
Frequency/
Vehicle) | Doses/
Concen-
trations | Endpoints Assessed | Parents | Offspring | Comments | | Narotsky et al
1994 | EHXA
99+% pure | Sprague-
Dawley rats Pregnant
females Control: 20 Treated:15/
dose group | Chernoff/
Kavlock assay.
Dams allowed
to deliver and
the pups
examined
postnatally | Oral gavage, once daily on days 6-15 of gestation Corn oil vehicle | 0, 900, 1200
mg/kg/d | Mortality, clinical signs (rales, dyspnea, motor depression), BW | †Mortality in treated groups (27% and 40%) †motor depression | ↓ Number of live pups on PND 1 (p<0.05 at 900 mg/kg/d; not assessed in 1200 mg/kg/d grp) ↓ Number of live pups on PND 6 (p<0.01 at 900 mg/kg/d; p<0.001at 1200 mg/kg/d; p<0.001at 1200 mg/kg/d; p<0.001at 1200 mg/kg/d; p<0.001at 1200 mg/kg/d; p<0.001 at 900 mg/kg/d; on PND 1 (p<0.001 at 900 mg/kg/d; not assessed in 1200 mg/kg/d grp) ↓ pup weight on PND 6 (p<0.001 at 900 mg/kg/d; not statistically significant at 1200 mg/kg/d) | According to authors, maternal effects not responsible for developmental effects. | | | | | Experimental Pa | arameters | | | Results (| Effects/NOEL/LOEL) | | |--------------------|---|--|---|--|---|--|--|---|---| | Reference | Chemical
Source/
Purity/
Preparation | Animal Model
(Species/
Strain/Sex/
Age)
N | Study Design | Exposure
(Route/Period/
Frequency/
Vehicle) | Doses/
Concentrations | Endpoints
Assessed | Parents | Offspring | Comments | | | | Sprague-
Dawley rats
Pregnant
females
N=7-10 | Dams dosed at
1400 hr on GD
11.5, followed by
32 µCi ⁶⁵ Zn at
2200 hr, and
killed at 0800 hr
on GD 12.5 | Single gavage
dose at 1400 hr
on GD 11.5,
followed at 2200
hr by gavage with
32 µCi 65Zn. | 0, 3.13, 6.25, 9.38 or
12.5 mmol/kg (0, 451,
902, 1355 or 1804
mg/kg
Controls received 1
ml/kg corn oil | Maternal food intake, maternal liver Zn, 65Zn and metallothionein (MT). Fetal weight, crown-rump length, encephalocele | Maternal food intake not affected. †Maternal liver Zn, MT, and 65Zn accumulation, dose-related. | At the higher doses, ↓ 65Zn retained in embryos. | EHXA-
associated
changes in
⁶⁵ Zn distribu-
tion were
associated
with
increased
maternal | | Bui et al.
1998 | EHXA
99.4% pure | As above | Dams fed
diets
containing
various levels of
Zn from GD 0-16,
dosed with EHXA
on GD 8-15, and
killed on GD 16 or
19 | Zn administered in the diet from GD 0 -16 and EHXA administered by gavage on GD 8-15 Corn oil vehicle | 0, 3.5 mmol EHXA/kg/d;
Zn in the diet at 1, 25 or
97 μgZn/g | Maternal BW
gain, maternal
liver Zn and MT.
Fetal weight,
crown-rump
length,
malformations | Lower dietary Zn intake ↓ maternal liver MT and Zn and plasma Zn. Lower dietary Zn intake ↓ maternal BW gain in EHXA-treated and control groups. Adequate and supplemental Zn intake ↓ maternal BW gain in EHXA-treated group but not controls | ↑ encephalocele and tail defects in GD 16 fetuses of EHXA-treated dams fed low or adequate Zn diet; highest in low Zn group. In GD 19 fetuses, ↑ tail defects with EHXA; highest incidence in the low Zn EHXA group. Encephalocele only observed in the low Zn EHXA-treated group. ↓ Fetal weight and crownrump lengths by EHXA and low dietary Zn. ↑ incidence of rib anomalies in EHXA-groups | liver MT. According to the authors, these results support the hypothesis that EHXA, which induces maternal toxicity, may influence embryonic Zn metabolism and trigger | | | | As above | in vitro GD 10.5 embryos collected from control dams cultured for 48 hr in serum from control or EHXA- treated (9.38 mmol EHXA/kg) male rats fed diets containing various levels of Zn. | in vitro Embryos exposed in culture to serum from male rats fed diets with various levels of Zn and treated with EHXA. Supplemental Zn was added to some cultures. | Serum from males treated with 0 or 9.38 mmol EHXA/kg fed diets containing 4.5 or 25 µg Zn/g Zn added to cultures yielded Marginal (10.4 µM Zn): Adequate (20.1 µM Zn). (Sera measured for Zn before and after culture. EHXA conditioned: 10.5 µM; Marginal Zn + Zn repletion: 19.4 µM; EHXA conditioned + Zn repletion: 19.8 µM | Crown-rump
length, head
length, number
of somites,
developmental
score | | Embryodevelopmental toxicity effects. Embryos cultured in serum from males with either low Zn diets or treatment with EHXA exhibited delayed development; addition of Zn to these sera eliminated the developmental toxicity effects. | abnormal
development | | Reference | | | Experimental Parameters | | | Results
(Effects/NOEL/LOEL) | | | | |----------------------------|---|---|--|--|---|--|---------|---|--| | | Chemical
(Source/
Purity/
Preparation) | Animal
Model
(Species/
Strain/Sex/
Age)
N | Study Design | Exposure
(Route/Period/
Frequency/
Vehicle) | Doses/
Concen-
trations | Endpoints
Assessed | Parents | Offspring | Comments | | Svechnikova
et al. 2007 | EHXA
obtained from
Sigma,
purity not
stated | In vitro study
using primary
cultures of
pituitary cells | Cells from anterior pituitary glands of 20-day–old female rats were cultured with EHXA for 24 hr at 37 °C, and then for an additional 3 hr in fresh medium containing EHXA and 1 ng/ml GnRH. | Cell culture
media, 24 hr
plus 3 hr | 0, 1 µM
EHXA in
culture
medium | LH released by cultured pituitary cells into the cell culture medium | N/A | EHXA enhanced by 30% (p≤ 0.05) the GnRH-stimulated production of LH by cultures of pituitary cells isolated from untreated 20-day-old female rats. EHXA had no effect on basal production of LH. | EHXA can
directly
enhance the
sensitivity of
gonadotropes
to GnRH | | Dawson 1991 | EHXA
≥98% pure | Xenopus
embryos
75 embryos/
group | A modified FETAX (Frog
Embryo Teratogenesis
Assay: <i>Xenopus</i>) assay.
Embryos were exposed
in covered glass Petri
dishes (25 embyos/dish;
3 replicates per
treatment) containing 10
ml of solution for 96
hours, with solution
renewal every 24 hours.
Embryos were then fixed
and evaluated for gross
malformations | FETAX
solution, 96 hr
exposure | 0, 22, 44,
55, 66 or 88
mg/L | Number and type of malformations were noted for each dish | N/A | Number of survivors malformed: 5 (7%) in controls 8 (11%) at 22 mg/L 28 (37%) at 44 mg/L 49 (66%) at 55 mg/L 63 (84%) at 66 mg/L 75 (100%) at 88 mg/L EC ₅₀ = 47.9 mg/L Malformations induced included: microcephaly, abnormal gut coiling, eye edema, skeletal kinking and general edema | | 32 #### **Ethyl-tert-Butyl Ether (ETBE)** Molecular Formula: C₆H₁₂O Ethyl-tert-Butyl Ether is an oxygenate gasoline fuel additive. #### Relevant Studies - Asano, Y., T. Ishikura, K. Kudoh, R. Haneda and T. Endoh (2011). "Prenatal developmental toxicity study of ethyl tertiary-butyl ether in rabbits". Drug Chem Toxicol **34**(3): 311-7. - de Peyster, A., B. Stanard and C. Westover (2009). "Effect of ETBE on reproductive steroids in male rats and rat Leydig cell cultures". <u>Toxicol Lett</u> **190**(1): 74-80. - Fujii, S., K. Yabe, M. Furukawa, M. Matsuura and H. Aoyama (2010). "A one-generation reproductive toxicity study of ethyl tertiary butyl ether in rats". Reprod Toxicol **30**(3): 414-21. - Gaoua, W. (2004). "Ethyl tertiary butyl ether (ETBE) CAS No. 637-92-3: Prenatal developmental toxicity study by the oral route (gavage) in rat". [Evreux], France, IFM Recherche. - Medinsky, M. A., D. C. Wolf, R. C. Cattley, B. Wong, D. B. Janszen, G. M. Farris, G. A. Wright and J. A. Bond (1999). "Effects of a thirteen-week inhalation exposure to ethyl tertiary butyl ether on fischer-344 rats and CD-1 mice". <u>Toxicol Sci</u> **51**(1): 108-18. ### **Ethyl-tert-Butyl Ether (ETBE)** | Reference | Experimental Parameters | | | | | | Results
(Effects/NOEL/LOEL) | | | |-------------------------|--|--|---|---|---|---|--|---|----------| | | Chemical
(Source/
Purity/
Preparation) | Animal
Model
(Species/
Strain/Sex/
Age)
N | Study Design | Exposure
(Route/Period/
Frequency/
Vehicle) | Doses/
Concen-
trations | Endpoints
Assessed | Systemic Toxicity | Reproductive Toxicity | Comments | | Medinsky
et al. 1999 | ETBE (ARCO
Chemical Co.
Newtown
Square, PA)
97.5% pure | Fischer 344 rats, males and females, 5 weeks old 10-15 rats/ sex/grcoup | Gross pathology/ histopathology study Euthanized/ necropsied on day after last exposure. All retained tissues fixed in 10% formalin. Tissues were embedded in paraffin for microscopy evaluation | Inhalation;
6h/day for 5
consecutive days/
week for at least
13 weeks; total of
65 exposure
days. | 0 (filtered air),
500, 1750,
5000 ppm | Body weight (BW) and clinical signs prior to treatment and weekly through the exposure period. Tissues of relevance were: Pituitary, testes, epididymis, prostate, seminal vesicles, ovaries, vagina, uterus. Testes examined in all dosed males. | No effect on mortality. 25% decrease in BW gain for males and females at 1750 and 5000 ppm. Significantly increased BW in female rats at 5000 ppm. Transient ataxia in male rats at 5000 ppm | Testes were the "only tissues with significant microscopic findings". Increased percentage of seminiferous tubules with spermatocyte degeneration at 1750 and 5000 ppm. Decreased spermatocytes in tubules of stage I-VIII. No treatment effect at 500 ppm (=NOEL). | | | | As above | CD-1 mice,
males and
females,
5 weeks old
10-15 mice/
sex/group | As above | As above | As above | As above | No effect on mortality or BW.
Transient ataxia in male and
female mice at 5000 ppm | No reported effects. | | | | | E | Experimental Paran | neters | | | Results
(Effects/NOEL | | | |---------------------------|--|---
--|--|---|--|---|---|---| | Reference | Chemical
(Source/
Purity/
Preparation) | Animal
Model
(Species/
Strain/Sex/
Age)
N | Study Design | Exposure
(Route/Period/
Frequency/
Vehicle) | Doses/
Concen-
trations | Endpoints
Assessed | Systemic Toxicity | Reproductive Toxicity | Comments | | de Peyster
et al. 2009 | ETBE from Lyondell Chemical Company (Houston, TX). The purity of the individual batch tested was not provided. The | F344 rats,
Adult males
12/group | 14-Day in vivo experiment Animals euthanized by carbon dioxide sedation followed by decapitation 1 h after the last dose on day 14. | Gavage
daily for 14 days
Corn oil vehicle | 0 (vehicle),
600, 1200, or
1800 mg/kg/
day | Plasma concentrations of testosterone and estradiol (assessed by radioimmuno- assay). Organ weights (testes, accessory sex organs), testis fixed for histopathology. | All rats were lethargic for up to 30 min after dosing. Three rats died: 1 on treatment day (TD) 10 in the 1200 mg/kg and 2 on TD 13-14 in the 1800 mg/kg group. Depressed mean group BW at 1200 and 1800 mg/kg/day (p < 0.05). No statistically significant differences in organ weights. | Testosterone reduced to 66% of control at 1800 mg/kg (NS). Estradiol was significantly increased in both the 1200 and 1800 mg/kg dose groups relative to control (p < 0.05). NOEL = 600 mg/kg/day | The study report stated that "gavage errors could not be ruled out as the cause of death" for animals in the treatment groups | | | accompanying
MSDS listed
ETBE
composition as
90–98% | Isolated
Leydig cells
from adult
Sprague–
Dawley rats | In vitro: isolated
Leydig cells
(viability >90%;
purity >85%)
incubated in the
presence of
hCG (2.0 IU/ml)
to stimulate
testosterone
production | Direct exposure into RPMI culture medium for 3 h. | 0, 50, 100
mM | Testosterone release into the culture medium. | | 50 mM ETBE inhibited testosterone production to 67% of control (p<0.05) (LOEL). | | | | | Ex | kperimental Paran | neters | | | (Effect | Results
ts/NOEL/LOEL) | | |----------------------|--|---|---|--|---|---|---|---|----------| | Reference | Chemical
(Source/
Purity/
Preparation) | Animal
Model
(Species/
Strain/Sex/
Age)
N | Study Design | Exposure
(Route/Period/
Frequency/
Vehicle) | Doses/
Concen-
trations | Endpoints Assessed
Parents/ Offspring | Parents | Offspring | Comments | | Asano et
al. 2011 | ETBE (Tokyo
Chemical
Industry Co.,
Ltd. Tokyo,
Japan), 99%
pure | New Zealand
white rabbits
Pregnant
females
14 weeks old
24 copulating
females/group | Pregnant rabbits were killed on GD 28. Ovaries, uterus and live fetuses were evaluated at necropsy. | Oral (by catheter), daily from GD 6 to 27 | 0 (vehicle),
100, 300, or
1,000 mg/kg/
day in 1.67
mL/kg BW | Number of corpora lutea, live fetuses and embryo-fetal deaths as well as their stage were counted and recorded after the weighing of gravid uterus. Live fetuses and their placentas were observed for external malformations and gross abnormalities. Live fetuses were weighed and observed macroscopically for organ abnormalities and skeletal malformations. Body weight and food consumption was measured in parents | No deaths among dams. Mean BW of dams in the 1,000 mg/kg/day group was slightly lower than that of controls; the difference was statistically significant on GDs 12, 14 and 16. No differences in BW at lower doses. No differences in food consumption. At necropsy on GD 28 no abnormalities were observed in the main organs or tissues of the thoracic or abdominal cavities. | Four dams aborted: One on GD 28 in the control group; 2 in the 300 mg/kg/day group (one each on GD 19 and 26) and 1 on GD 25 in the 1000 mg/kg/day group. No significant differences were noted in the number of corpora lutea or implantations. No significant differences in the index of external malformations or incidence of skeletal malformations or variations External observation of fetuses revealed 1 fetus with acephaly and gastroschisis at 100 mg/kg/day and 1 fetus with brachyury at 1,000 mg/kg/day. | | | | | E | xperimental Param | eters | | | | Results
:/NOEL/LOEL) | | |----------------------|---|--|--|---|--|---|--|---|----------| | Reference | Chemical
(Source/
Purity/
Preparation) | Animal
Model
(Species/
Strain/Sex/
Age)
N | Study Design | Exposure
(Route/Period/
Frequency/
Vehicle) | Doses/
Concen-
trations | Endpoints Assessed | Systemic Toxicity | Reproductive Toxicity | Comments | | Fujii et al.
2010 | ETBE (Tokyo,
Japan) lot no.
2ZGTA, 99% | SD rats;
males and
females; 5
weeks old | One generation reproduction study Animals pretreated daily for 10 weeks, mated and then treated for an additional 16 weeks (males) or 17 weeks (females). | Oral F0 males and females dosed daily for 10 weeks prior to mating. After mating, F0 males and females treated daily for approximately 16 and 17 weeks, | 0 (vehicle),
100, 300, or
1,000 mg/kg/ | F0: BW and food consumption. At necropsy, recorded the number of implantation sites. Examined for sperm parameters. F1: During lactation, daily examination for clinical signs and mortality. 1 animal/sex/litter was | No changes in BW or food consumption. No treatment-related clinical signs of toxicity in any F0 rats during the dosing period. 2 F0 females in the 1000 mg/kg group were moribund and euthanized on lactation day (LD) 2 and LD 4 (all their pups died). | Gestation length significantly prolonged by 0.4 days in the 1000 mg/kg group (p≤0.05) No differences were found in any of the studied parameters for the F1 generation. No statistically significant differences in the indices of copulation, fertility, gestation and delivery. Normal estrous cyclicity in all groups. | | | 2010 | purity | 24
animals/sex/ | BW and food consumption for F0. | respectively. F1 weanling males and | day in 5 mL/
kg BW
 selected to observe
sexual development | Parents | Offspring | | | | | group | F1 necropsy at
PND 21, except
for 1 F1
weanling/sex/
litter selected for
observation of
sexual
development. | females and females dosed daily for approximately 4 and 2 weeks, respectively. Oive oil vehicle | | (preputial separation or vaginal opening), one testis and epididymis per male was fixed with Bouin's solution and preserved in 70% ethanol. | As above | No significant difference in the number of pups delivered. One full litter died from one animal in the F0 females 1000 mg/kg group without clinical signs | | | | | į | Experimental Parar | neters | | | Results
(Effects/NOEL | | | |---------------|--|--|--|--|---|--|---|---|----------| | Reference | Chemical
(Source/
Purity/
Preparation) | Animal
Model
(Species/
Strain/Sex/
Age)
N | Study Design | Exposure
(Route/Period/
Frequency/
Vehicle) | Doses/
Concen-
trations | Endpoints
Assessed
Parents/ Offspring | Parents | Offspring | Comments | | Gaoua
2004 | ETBE
(TOTAL
France S.A.,
Paris-la-
Défense,
France),
batch Nos.
S02-08-159-
I3 and S02-
08-159-I3/2,
Purity >98% | Sprague-
Dawley
female rats,
11 weeks-
old
24/group | Developmetnal toxicity study Animals treated daily, sacrificed at day 20 post mating. Macroscopic examination of dams and fetuses. Litter parameters recorded | Gavage,
once/day; from
day 5 to 19 after
mating
Corn oil vehicle | 0 (vehicle),
250, 500 or
1000 mg/kg/
day | Clinical signs and mortality. Body weight and food consumption. Litter parameters: weight of gravid uterus, number of corpora lutea, implantation sites, early and late resorptions, dead and live fetuses. The fetuses were weighed, sexed. Half of the fetuses from each treatment group were subjected to a detailed examination of soft tissue, while the remainder underwent a detailed skeletal examination. | At 1000 mg/kg/day significantly lower maternal BW gain (-11%, p<0.05) and net BW gain (-17%, p<0.01) were recorded over the treatment period. NOEL for maternal toxicity is 500 mg/kg/day. | No treatment-related effects on gestational parameters or fetuses. The NOEL for embryofetal development is 1000 mg/kg/day. | | ## p,p'-Oxybis(benzenesulfonyl hydrazide) ## Molecular Formula: C₁₂H₁₄N₄O₅S₂ p,p'-Oxybis(benzenesulfonyl hydrazide) is a blowing agent for sponge rubber and expanded plastics. **Relevant Studies** None identified ## 1,3,5-Triglycidyl-s-triazinetrione ### Molecular Formula: C₁₂H₁₅N₃O₆ 1,3,5-Triglycidyl-s-triazinetrione is a curing agent used in powder coatings. **Synonyms:** TGIC; Triglycidyl isocyanurate; 1,3,5-Triglycidyl-s-triazinetrione. There are two main technical grades of TGIC used in the manufacture of powder coatings worldwide. These are 'Araldite PT 810' (also known as 'TK 10622') manufactured by Ciba-Geigy Ltd, Switzerland, with purity > 97% TGIC and 'TEPIC', manufactured by Nissan Chemical Industries Pty Ltd, Japan with purity of approximately 90% TGIC (NICNAS., 1994). ### Relevant Studies Bushy Run Research Center (1992a)., "Dominant Lethal Assay of Inhaled Ph 90-810 Dust in CD-1 Mice (No. 54-515), BRRC"., [Export], Pennsylvania, USA Bushy Run Research Center (992b)., "Dominant Lethal Assay of Inhaled PL90-810PC Dust in CD-I Mice (No. 54-540), BRRC"., [Export], Pennsylvania, USA. Ciba-Geigy Ltd. (1986)., "Chromosome Studies on Male Germinal Epithelium of Mouse, Spermatogonia (No. 850067)"., Ciba-Geigy Ltd, Basel, Switzerland. Centre International de Toxicologie (CIT) (1995). "13-Week Toxicology and Fertility Study by Oral Route (Dietary Admixture) of PT 810- TGIC in Male Rats". Hazleton Laboratories America Inc. (1989a)., "Mutagenicity Test on PL88-810 in the Mouse Spermatogonial Cell Cytogenetic Assay (No. 10386-0-474)". Hazleton Laboratories America Inc. USA. Hazleton Laboratories America Inc. (1989b)., "Mutagenicity Test on PL88-810 in the Dominant Lethal Assay (No. 10386-0-471)". Hazleton Laboratories America Inc. USA. Hazleton Microtest (1991a)., "Study to evaluate the Chromosome damaging Potential of TK 10622 (PT810 [TGIC, 97%]) by its effects on the Spermatogonial Cells of Treated Mice"., Hazleton Microtest, Heślington, York, United Kingdom. Hazleton Microtest (1991b)., "Study to evaluate the Chromosome damaging Potential of TK 10622/2, a Polyester Formulation Containing 60.2 per cent Polyester (P 2400, DSM Resins), 4.8 per cent TGIC and 35 per cent TiO2 (CL 2310, Kronos) by its Effects on the Spermatogonial Cells of Treated Mice". Hazleton Microtest, Heslington, York, United Kingdom. Hazleton Microtest (1991c)., "Study to evaluate the Chromosome damaging Potential of TK 10622/1, a Polyester Formulation Containing 91 per cent Polyester (E2514, UCB) and 8.92 per cent TGIC by its Effects on the Spermatogonial Cells of Treated Mice". Hazleton Microtest, Heslington, York, United Kingdom. NICNAS. (1994). "Priority existing chemical no 1 – triglycidyl isocyanurate (TGIC), full public Report". National Industrial Chemicals Notification and Assessment Scheme. Australian Government Publishing Service, Canberra. ### Studies reviewed in NICNAS., 1994 - Ciba-Geigy Ltd (1986)., "Chromosome Studies on Male Epithelium of Mouse Spermatocytes (No. 850068) with TK 10622". Ciba-Geigy Ltd, Basel, Switzerland. - Ciba-Geigy Ltd (1986)., "Dominant Lethal Test, Mouse, Three Weeks (No 850069)". Ciba-Geigy Ltd, Basel, Switzerland. - Bushy Run Research Center (1991)., "PL90-810PC: Chromosomal Aberrations Assay in Mouse Spermatogonial Cells (No. 54-562)"., BRRC, Export, Pennsylvania, USA. - Safepharm Laboratories Ltd (1992)., "TGIC Technical and TGIC ten percent Powder:Chromosome Analysis in Mouse Spermatogonial Cells., Comparative Inhalation Study (No.14/75) (Draft)"., Safepharm Laboratories Ltd, Derby, United Kingdom. - Bushy Run Research Center (1992c)., "PL90-810: Chromosomal Aberrations Assay in Mouse Spermatogonial Cells, Project no. 54-520"., BRRC, Export, Pennsylvania, USA. - Export, Pennsylvania, USA. Hazelton Microtest, (1993)., "Study to Evaluate the Chromosome Damaging Potential of U.60092.100 G by its Effect on the Spermatogonial Cells of Treated Mice (No. CGP 7/SGC)". Hazelton Microtest, Harrogate, England. # 1,3,5-Triglycidyl-s-triazinetrione (TGIC) | | | Ex | perimental Parameters | | | | | sults
IOEL/LOEL) | | |---------------------------------|--|---|---|---|-------------------------------|---|----------------------------------|---|---| | Reference | Chemical
(Source/ Purity/
Preparation) | Animal Model
(Species/
Strain/Sex/
Age)
N | Study Design | Exposure
(Route/
Period/
Frequency/
Vehicle) | Doses/
Concen-
trations | Endpoints
Assessed | Systemic Toxicity | Reproductive toxicity | Comments | | Ciba-Geigy
1986
No 850067 | TK10622
(Commercial
grade Araldit PT
810)
> 97% TGIC
pure | Tif MAGf
(SPF) Mouse
N= 15/dose
group;
12/control | Chromosome studies on male germinal epithelium (spermatogonia) Male mice were dosed on 5 consecutive days. Killed on the day following the final treatment. | Oral
Arachis oil | 0, 43, 128
mg/kg | Chromosomal
Aberrations | Not reported | Cytotoxicity observed
at 128 mg/kg.
Chromosomal
aberrations induced | Statistical
analysis was not
carried out on the
data | | Ciba-Geigy
1986
No 850068 | TK 10622
> 97% TGIC
pure | Tif MAGf
(SPF) Mouse
12/Negative
control | Chromosome studies on male germinal epithelium (spermatocytes) Killed 3 days after the final dose | Oral gavage
on days 0, 2,
3, 5 and 9, in
arachid oil | 0, 32 or 96
mg/kg | Chromosomal
Aberrations in
primary and
secondary
spermatocytes | N/A | Authors of review concluded the results of this study were negative. | Primary source
not available
Cited in NICNAS
1994 | | Ciba-Geigy
1986
No 850069 | TK 10622
> 97% TGIC
pure | Tif MAGf
(SPF) Mouse
20 males & 40
females/dose
group | Dominant Lethal Assay
Mice mated over 3
periods of 6 days
Females killed on
GD
14 to determine number
of live and dead fetal
resorptions | Single oral
gavage in
arachid oil | 0, 160, or 480
mg/kg | Females killed on
GD14 and
numbers of live
and dead fetal
resorptions noted | Parents No information provided | Offspring Significant †in number of embryonic deaths compared to control at 480 mg/kg for first mating period but not in the second and third mating periods | Primary source
not available
Cited in NICNAS
1994 | | | | Ex | perimental Parameters | ; | | | | sults
OEL/LOEL) | | |---|--|---|---|---|--|---|---|---|--| | Reference | Chemical
(Source/ Purity/
Preparation) | Animal Model
(Species/
Strain/Sex/
Age)
N | Study Design | Exposure
(Route/Period/
Frequency/
Vehicle) | Doses/
Concen-
trations | Endpoints
Assessed | Systemic Toxicity | Reproductive
Toxicity | Comments | | Hazelton
1989a
(James
Ivett)
No 10386-0-
474 | PL88-810
> 97% TGIC
pure | ICR mice
10/group | Cytogenetics assay-
Mutagenicity test in
spermatogonial cells
Killed 6 hours after
the final dosing for
extraction of testes | Oral gavage (in
peanut oil), for
5 consecutive
days | 0 30, 125 or
350 mg/kg;
Positive control
(triethylene-
melamine, 1.3
mg/kg via
intraperitoneal
injection) | Body weight and weight change; Chromosomal aberrations (simple, not computed, complex) in spermatogonia | No toxic effects were noted | ↑ Frequencies of chromosomal aberrant cells at 125 and 350 mg/kg. | | | Hazelton
1989b
(James
Ivett)
No 10386-0-
471 | PL88-810
> 97% TGIC
pure | ICR mice
20/group | Dominant Lethal
Assay
18 hours after
exposure male mice
bred to first group of
two females (for up
to 5 days) and
similarly mated to
different females for
a total of 3 weeks.
Females killed
around 14 days after
copulation and uteri
examined for
implantations. | Oral gavage (in peanut oil), Triethylene- melamine, 0.3 mg/kg was positive control (intra- peritoneal Injection). | 0 137.5, 275 or
550 mg/kg | Mortality, toxic effects in males Females were killed around 14 days after copulation. At necropsy uteri examined for the number of live or dead implantations (early or late). | Parents No toxic effects in males after dosing | Offspring No significant effects at any dose on fertility, total number of implantations, frequency of dead implantations, proportion of females with either one or more or two or more dead implantations, or frequency of dead implants relative to total implants/female. | Positive control treatment induced large and significant effects on all parameters examined. | | | | Ехр | perimental Parameters | | | | (Effec | Results
ts/NOEL/LOEL) | | |---------------------------------------|---|---|---|---|--|--|---|---|--| | Reference | Chemical
(Source/ Purity/
Preparation) | Animal Model
(Species/
Strain/Sex/
Age)
N | Study Design | Exposure
(Route/Period/
Frequency/
Vehicle) | Doses/
Concen-
trations | Endpoints
Assessed | Systemic
Toxicity | Reproductive
Toxicity | Comments | | Hazelton
1991a
(R.
Marshall) | TK10622 (PT
810 [TGIC, 97%
pure]) | B6D2F1 male mice
(3/group in range
finding study); 5 in
control group
5/group
10/group for high
dose of 115 mg/kg
in case
replacements were
needed | In vivo cytogenetics assay - Chromosome damaging potential on spermatogonial cells. Treated animals killed and sampled 6 hours after final dose. Positive control animals killed 24 hours after treatment. Where possible, ≥ 50 metaphases from each testis were analyzed | Oral for 5
consecutive
days;
Vehicle control
- 0.5% (w/v)
carboxymethyl
cellulose | 28.75, 57.5 or
115 mg/kg
Mitomycin C
at 0.3 mg/kg
was positive
control (intra-
peritoneal) | Slides from all dose
groups examined
for chromosomal
aberrations | No deaths or
toxic effects
were
observed | Significant ↑ numbers of chromosomal aberrant cells at 28.5 and 115 mg/kg; several chromatid exchanges (rarely seen in untreated animals) observed at the mid-dose of 57.5 mg/kg. | Chromosomal aberrations and the frequency of aberrant cells in the positive control group were significantly greater than that in concurrent controls. | | Hazelton
1991b
(R.
Marshall) | TK10622, a polyester formulation containing 60.2 % polyester (P 2400 DSM Resins) [4.8% TGIC, and 35% TiO ₂ (CL 2310, KRONOS) | B6D2F1 male mice
5/group;
10 for high dose
(5000 mg/kg) in
case replacements
were needed | In vivo cytogenetics assay - Chromosome damaging potential on spermatogonial cells. Treated animals killed and sampled 6 hours after final dose Positive control animals killed 24 hours after treatment. Where possible, 50 metaphases from each testis were analyzed. | Oral for 5
consecutive
days
Vehicle control
- 0.5% (w/v)
carboxymethyl
cellulose | 185.2, 555.6,
1667 or 5000
mg/kg
Mitomycin C
at 0.4 mg/kg
was positive
control (intra-
peritoneal). | Slides from all dose
groups examined
for chromosomal
aberrations. | No deaths or
toxic effects
were
observed | No significant ↑ numbers of chromosomal aberrant compared to vehicle control. NOEL = 5000 mg/kg | The positive control induced a clear increase in the incidence of cells with structural aberrations. | | | | Ех | perimental Parameter | rs . | | | Re
(Effects/N | sults
NOEL/LOEL) | | |---------------------------------------|---|--|--|---|--|---|------------------------------------|---|---| | Reference | Chemical
(Source/ Purity/
Preparation) | Animal Model
(Species/
Strain/Sex/
Age)
N | Study Design | Exposure
(Route/Period/
Frequency/
Vehicle) | Doses/
Concen-
trations | Endpoints
Assessed | Systemic Toxicity | Reproductive
Toxicity | Comments | | Hazelton
1991c
(R.
Marshall) | TK10622/1, a
polyester
formulation
containing 91%
polyester
(E2514, UCB)
[8.92% TGIC] | B6D2F1 male
mice
5/group; 10 for
high dose of 800
mg/kg in case
replacements
were needed | In vivo cytogenetics assay Chromosome damaging potential
on spermatogonial cells. Treated animals killed and sampled 6 hours after final dose. Positive control animals killed 24 hours after treatment. | Oral for 5
consecutive
days;
In vehicle
control - 0.5%
(w/v)
carboxymethylc
ellulose;
Mitomycin C at
0.4 mg/kg was
positive control
(intra-peritoneal) | 29.63, 88.89,
266.7 or 800
mg/kg | Slides from all dose groups examined for chromosomal aberrations. Where possible, ≥ 50 metapases from each testis were analyzed. | No deaths were observed in animals | Significant ↑in frequency of chromosomal aberrant cells compared to vehicle control,at high dose of 800 mg/kg in two animals. This effect was onserved at a dose which caused a large decrease in cell proliferation in the testis. | The positive control induced a clear increase in the incidence of cells with structural aberrations. | | Bushy Run
1991 | PL90-810
Test article purity
10% TGIC
powder coating | CD-1 male mice
10/group | Chromosomal
Aberrations Assay
Animals killed 6
hours after end of
last exposure or 30
hours after
receiving positive
control. | Inhalation 6hrs/day for 5 consecutive days Cyclo- phosphamide 50mg/kg was positive control (intraperitoneal) | 0, 100,1000,
1700 mg/m ³ | Slides from all
dose groups
examined for
chromosomal
aberrations. | No information provided | % aberrant cells in animals with >50 scorable cells: 0.3,0.3, 1.6 and 2.5 for increasing doses with 6.9 for the positive control | ↓ number of animals with ≥50 scorable cells at low dose – possibly because of cytotoxicity Primary source not available. Cited in NICNAS 1994 Large quantity of dust deposited on chamber wall - grooming may have affected dose. | | | | Ex | perimental Parameter | rs | | | Re
(Effects/N | sults
IOEL/LOEL) | | |--|--|---|--|--|--|---|---|--------------------------|---| | Reference | Chemical
(Source/ Purity/
Preparation) | Animal Model
(Species/
Strain/Sex/
Age)
N | Study Design | Exposure
(Route/Period/
Frequency/
Vehicle) | Doses/
Concen-
trations | Endpoints
Assessed | Systemic Toxicity | Reproductive
Toxicity | Comments | | Bushy Run
(May)
1992a
PL 90-810 | Inhaled dust
> 97% TGIC
pure
particle size 2.5-
3.5 µm | CD-1 mouse 30 males /group | Dominant Lethal
Assay About 24 hours
after last exposure
males bred to
naïve females (1M:
2 F), with females
replaced every
week for 8 weeks | Inhalation of PL90-810 dust 6hrs/day for 5 consecutive days. | 0, 2.5, 10 or 50 mg/m³ 6hrs/day for 5 consecutive days. Positive control [(triethylenemelamine (TEM), 0.3 mg/kg via intraperitoneal injection] | Male fertility, sperm-positive and pregnant females | General toxicity at high dose NOEL = 10 mg/m³ Parents As above | | Sperm and spermatid stages (weeks 1, 2 and 3 of mating) were most sensitive to effects of positive control TEM Spermatocyte and spermatogonial stages were highly resistant to TEM induced dominant-lethal mutations | | | | Ex | perimental Parameter | S | | | | Results
(Effects/NOEL/LOEL) | | |------------------------------|--|---|--|---|---|--|---|--|--| | Reference | Chemical
(Source/ Purity/
Preparation) | Animal Model
(Species/
Strain/Sex/
Age)
N | Study Design | Exposure
(Route/Period/
Frequency/
Vehicle) | Doses/
Concen-
trations | Endpoints
Assessed | Parents | Offspring | Comments | | Bushy Run
(June)
1992b | PL 90-810PC Inhaled dust purity not stated, presumed > 97% TGIC particle size 2.5-3.5 µm | Mouse
CD-1
30 males/group | Dominant Lethal
Assay
About 24 hours
after last exposure
males bred to
naïve females
(1M: 2 F), with
females replaced
every week for 8
weeks. | Inhalation of
PL90-810 dust | 0, 100, 1000 or 1700 mg/m³ 6hrs/day for 5 consecutive days. Positive control (triethylene-melamine, 0.3 mg/kg via intraperitoneal injection) | Body weight
and general
toxic effects
Male fertility,
sperm-
positive, and
pregnant
females | → Body
weight on
males at
1000 and
1700 mg/m³
NOEL for
general
toxicity =
100 mg/m³ | No effect on male fertility, on number of resorptions/litter, total number of implants, number of viable implants or % postimplantation loss. No dominant-lethal effects. NOEL = 1700 mg/m ³ | Sperm and spermatid stages (weeks 1, 2 and 3 of mating) were most sensitive to effects of positive control TEM; spermatocyte and spermatogonia I stages were highly resistant to TEM induced dominant-lethal mutations | | Bushy Run
1992c | PL90-810
Test article purity
Technical grade
TGIC
presumed > 97%
TGIC | Mouse
10/group | Chromosomal
Aberrations Assay
Killed 6 hours end
of last exposure or
30 hours after
given positive
control | Inhalation;
Cyclophosphami
de 50mg/kg was
positive control
(intra-peritoneal) | 0, 2.5, 10,or 50 mg/m³ 6hrs/day for 5 consecutive days | Slides from
all dose
groups
examined for
chromosoma
I aberrations | Systemic
Toxicity No deaths or
adverse
clinical signs
observed | Reproductive Toxicity % aberrant cells in animals with >50 scorable cells: 4.7, 5.1, 2.1, and 8.3 for dose levels 0, 2.5, 10 or 50 mg/m³ with 12.7 for the positive control Low number of scorable cells at 10 and 50 mg/m³ dose groups and mean number of aberrant cells in control group was higher than expected | Large quantity of dust deposited on chamber wall - grooming may have affected dose Primary source not available. Cited in NICNAS 1994 | | | | | Experimental Para | meters | | | Re:
(Effects/N | sults
OEL/LOEL) | | |---|---|--|--|---|--|--|--|---|---| | Reference | Chemical
(Source/
Purity/
Preparation) | Animal Model
(Species/
Strain/Sex/
Age)
N | Study Design | Exposure
(Route/Period/
Frequency/
Vehicle) | Doses/
Concentrations | Endpoints
Assessed | Systemic Toxicity | Reproductive
Toxicity | Comments | | Safepharm
1992 | TEPIC
technical
(approximately
90% TGIC) or
10% powder
coating | CD-1 mouse
10/group for
groups 1-5;
Group 6&7 was
positive control
with 5/group | Chromosomal analysis in spermatogonia. Animals killed 6 hours after last exposure or 24 hours after exposure to positive control | Nose-only
Inhalation study Oral administration of TEPIC included for comparison | 0, 7.8 (TEPIC),
95.3, 255.3 mg/m³,
(as 10% powder)
115 mg/kg - oral
(TEPIC) for 5
consecutive days.
50 mg/kg cyclo-
phosphamide (oral)
and 3.0
mg/kg
mitomycin C (intra-
peritoneal) | Body weight and clinical signs Cytotoxicity, mortality | Hunched posture
and piloerection
noted on day 5 at
115 mg/kg. | Slight cytotoxicity in one animal at 255.3 (10% TEPIC). No significant ↑ in chromosomal damage in spermatogonia noted at any of the inhalation dose groups. Significantly ↑ in cytotoxicity and chromosomal aberrations at 115 mg/kg. | Primary source not available Cited in NICNAS 1994 Cyclophosphamide positive control did not ↑ chromosomal damage. According to authors effects of cyclophoshamide cannot be detected at a 24 hour kill-time. | | Hazleton
Microtest
Laboratory
1993 | 4.6% TGIC
powder
coating
U.60092.100G | B6D2F1
Mice
6 males/group | Chromosome damaging potential on spermatogonial cells. Killed 6 hours after last exposure or 24 hours after exposure to positive control | Inhalation | 0, 250, 500, 1000 or
2000 mg/m³; Positive
control was 0.3
mg/kg mitomycin C
(intra-peritoneal) | Slides from all
dose groups
examined for
chromosomal
aberrations | Body weights of animals exposed to powder coating remained the same or slightly during the period of exposure. | Significant ↑ numbers of spermatogonial cells with chromosomal aberrations (mainly due to chromosome damage in one animal) at 2000 mg/m³ | Primary source not available Cited in NICNAS 1994 The positive control showed a significant ↑ in number of cells with chromosomal aberrations. | | | | Ехр | perimental Parameters | i | | | | sults
IOEL/LOEL) | | |--|---|--|---|--|-------------------------------|--|---|--|--| | Reference | Chemical
(Source/
Purity/
Preparation) | Animal Model
(Species/
Strain/Sex/
Age)
N | Study Design | Exposure
(Route/Perio
d/Frequency/
Vehicle) | Doses/
Concen-
trations | Endpoints
Assessed | Systemic Toxicity | Reproductive
Toxicity | Comments | | Centre
International
de
Toxicologie
1995
Study No.
11099 | Test article purity TGIC PT810 > 97% TGIC pure (concentration in dietary mixture provided) | Sprague-
Dawley rats 10 treated males /group 20 untreated females per group | Toxicity & Fertility Study: males killed after 13 weeks of exposure, selected organs weighed, sperm sampling performed on day of sacrifice for concentration and viability of spermatozoa. Fertility study: Female rats received untreated diet. After 64 days of treatment, each male was placed with 2 untreated females for mating. On day 19 females were allocated to hysterectomy or delivery subgroup | 13 weeks in diet at 0, 10, 30 or 100 ppm | 0, 0.7, 2.1,
7.3 mg/kg | Clinical signs, mortality, body weight Mean spermatozoa viability Fertility outcome Embryonic/pup development Pre and post-implantation loss, number of live fetuses, fetal body weight, sex ratio, number live born, viability at PND 4 and PND 21, external anomalies, malformations, reflex development Females: Bodyweight on days 0, 6, 9, 12, 15 or 20 of pregnancy and Day 1, 7, 14, 21 post-partum (delivery group) | Slightly \ body weight gain in first 6 weeks at 100 ppm group. Male NOEL= 30 ppm (2.1 mg/kg-day) Parents As above | Dose-related decrease in sperm count (linear trend test p=0.015); ↓Mean number of spermatozoa (5, 13 and 23% compared to controls), No impact on fertility Offspring No impact on embryonic or pup development | For the treated groups; the mean number of spermatozoa was lower than the lowest value of controls as follows: 1/10, 2/10 and 4/10 animals | ### 4-Vinyl-Cyclohexene (VCH) ## Molecular Formula: C₈H₁₂ 4-Vinyl-cyclohexene has been used as a solvent and in the production of flame retardants, polyolefins and vinylcyclohexene dioxide. ### Relevant Studies A relatively large body of relevant data was identified because the compound is a model compound for ovotoxicity. There are fewer publications on male reproductive and developmental toxicity for VCH. Below, the publications on male reproductive and developmental toxicity are listed first, followed by tabulations of study design parameters and results for those studies. Then the publications on female reproductive toxicity are listed. Because of the large number of studies, a recent review of female reproductive toxicity of VCH published in a peer-reviewed scientific journal is provided (in Appendix B), rather than data tabulations. All listed publications on the compound have been provided on CD to the DART IC and are available to the public upon request. 1. Male Reproductive and Developmental Toxicity (Summarized in Table⁴) Bevan, C., J. C. Stadler, G. S. Elliott, S. R. Frame, J. K. Baldwin, H. W. Leung, E. Moran and A. S. Panepinto (1996). "Subchronic toxicity of 4-vinylcyclohexene in rats and mice by inhalation exposure". <u>Fundam Appl Toxicol</u> **32**(1):1-10. ⁴ Some of these papers also provide data on female reproductive toxicity of 4-vinyl-cyclohexene (VCH) (see Relevant Studies 2. *Female Reproductive Toxicity*); however, only data relevant to male reproductive and developmental toxicity are summarized in the table. - George, J. D., P. A. Fail, T. B. Grizzle, J. J. Heindel and R. E. Chapin (1991). "Final report on the reproductive toxicity of 4-vinylcyclohexene (CAS no. 100-40-3) in CD-1-Swiss mice: final study report and appendices I-II". NTIS Technical Report **211250**(155). - Grizzle, T. B., J. D. George, P. A. Fail, J. C. Seely and J. J. Heindel (1994). "Reproductive effects of 4-vinylcyclohexene in Swiss mice assessed by a continuous breeding protocol". Fundam Appl Toxicol 22(1): 122-9. - Hooser, S. B., D. G. DeMerell, D. A. Douds, P. Hoyer and I. G. Sipes (1995). "Testicular germ cell toxicity caused by vinylcyclohexene diepoxide in mice". Reprod Toxicol **9**(4): 359-67. # 4-Vinyl-Cyclohexene (VCH): Studies Reporting on Male Reproductive or Developmental Effects | | | Ехре | erimental Parame | eters | | | F
(Effects | | | |--|---|--|---|--|---|---|---|--|----------| | Reference | Chemical
(Source/
Purity/
Preparation) | Animal
Model
(Species/
Strain/Sex/
Age)
N | Study
Design | Exposure
(Route/Period/
Frequency/
Vehicle) | Doses/
Concen-
trations | Endpoints
Assessed | Systemic Toxicity | Reproductive Toxicity | Comments | | Grizzle et
al. 1994;
George et
al. 1991 | VCH > 99%
pure | CD-1 (Swiss) mice, male and female, 11 weeks old Control: 40 mice/sex/ group; Treated: 20 mice/sex/ group | Reproductive Assessment by Continuous Breeding (RACB) study F0: Both sexes treated 1 week then cohabited for 14 weeks; F1: control and high dose offspring of both sexes treated from weaning to 74 days of age,
mated for one week, with necropsy after birth of F2 litters. | Gavage, daily F0 dosing: 15 weeks (males); 18 weeks (females) F1 dosing: weaning through 74 days of age plus 1 week mating and 3 weeks gestation Corn oil | 0 (corn oil),
100, 250,
500 mg/kg-d | F0: BW, food and water intake, fertility measures per pair; pregnancy outcome and pup growth per litter F1 (control and high-dose only): BW, liver weight, food and water intake, fertility, pregnancy outcome, estrus cyclicity, sperm evaluations, ovarian cell counts, histopathology | F0: No effect on mortality or food and water intake. 8% decrease in BW of 500 mg/kg/d females at conclusion of dosing. F1 (500 mg/kg-d males and female): Decreased BW post weaning. Sporadic increased food and water intake post weaning. Increased liver weights at conclusion of dosing. Parents As above | F0: No effects on mating index, fertility index, or pregnancy outcome endpoints. F1 (500 mg/kg-d): No effects on mating index, fertility index or pregnancy outcome endpoints. F1 females: No effects on estrous cycle. Reduced numbers of ovarian primordial, growing and antral follicles at conclusion of dosing. F1 males: No effect on weights of testis, epididymis, or prostate. Reduced absolute weight of seminal vesicles and counts of spermatid heads per mg of testicular tissue. Offspring No developmental effects reported | | # 4-Vinyl-Cyclohexene (VCH): Studies Reporting on Male Reproductive or Developmental Effects (continued) | Reference | | E | Experimental Paran | neters | | | Re:
(Effects/N | | | |----------------------|---|--|--|---|-------------------------------|---|---|---|----------| | | Chemical
(Source/
Purity/
Preparation) | Animal
Model
(Species/
Strain/Sex/
Age)
N | Study Design | Exposure
(Route/Period/
Frequency/
Vehicle) | Doses/
Concen-
trations | Endpoints
Assessed | Systemic Toxicity | Reproductive Toxicity | Comments | | Bevan et
al. 1996 | VCH purity
99.6% | B6C3F1
mice, male
and female,
7-8 weeks
old
10 mice/sex/
group | Subchronic
toxicity study
Clinical,
hematological,
serum/urine
analysis, and
necropsy. | Inhalation;
6h/day, 5 days/
Week, for 13
weeks (65 total
exposure days) | 0, 50, 250, 1000
ppm | BW, clinical,
hematological, and
serum/urine
parameters Relative organ
weights, routine
histopathological
evaluation of all
major organs. | 1000 ppm: 10/10 males and 5/10 females died on Test days 11 or 12. No treatment-related mortality in other groups. No effects on BW, organ weights, or hematological, serum, or urine parameters. Ovarian atrophy in 1000 ppm females. No other histopathological findings in any dose groups. | No effect on relative testis weight or histopathology. No data on ovarian weight. (Ovarian atrophy in 5/10 females at 1000 ppm) | | # 4-Vinyl-Cyclohexene (VCH): Studies Reporting on Male Reproductive or Developmental Effects (continued) | | | | Experimental Parar | meters | | | Results
(Effects/NOEL/LOEL) | | | |-----------------------|--|--|---|---|--|---|------------------------------------|--|----------| | Reference | Chemical
(Source/
Purity/
Preparation) | Animal
Model
(Species/
Strain/Sex/
Age)
N | Study Design | Exposure
(Route/Period/
Frequency/
Vehicle) | Doses/
Concen-
trations | Endpoints Assessed | Systemic Toxicity | Reproductive Toxicity | Comments | | Hooser et
al. 1995 | VCH 99% pure Vinylcyclohexene diepoxide (VCD) 97% pure Vinylcyclohexene 1,2-monoepoxide (VCM) 98% pure | B6C3F1
male mice,
4 weeks old
8-10 per
group | VCH, VCD, and
VCM testicular
toxicity
comparison | Intraperitoneal
(i.p.) injection
daily for 30 days
sesame oil | 0 (sesame oil), VCH: 800 mg/ kg-d VCD: 160 or 320 mg/kg-d VCM: 200 mg/ kg-d | Weights of testis, seminal vesicles Necropsy of testis, epididymis | No data reported | VCH: No effect on weights of testis or seminal vesicles VCD: Reduced weights of testis and seminal vesicles in both dose groups. VCM: No effect on weights of testis or seminal vesicles | | | | | B6C3F1
male mice,
4 weeks old
5 mice per
group
B6C3F1 | VCD time-
course study VCD dose- | i.p.injection daily for 5, 10, 15, 20, 25, or 30 days sesame oil i.p. injection | 0 (sesame oil),
320 mg/kg-d
0 (sesame oil), | As above As above | No data reported No data reported | VCD: dosing for ≥ 5 days caused reduced testis weight and testicular degeneration. VCD: dosing at ≥ 80 | | | | | male mice,
4 weeks old
10 mice per
group | response
testicular toxicity
study | daily for 30 days
sesame oil | 40, 80, 160 or
320 mg/kg-d | | | mg/kg-d for 30 days
caused reduced testis
weight and testicular
degeneration. | | ### 2. Female Reproductive Toxicity The scientific literature on the female reproductive toxicity of 4-vinyl cyclohexene (VCH) and its primary bioactive metabolite 4-vinyl-1-cyclohexene diepoxide (vinyl cyclohexane dioxide; VCD) are extensive. Studies have established that bioactivation of VCH to epoxides is required for its ovotoxicity, with VCD being the most potent epoxide of VCH in terms of follicular depletion. A literature search conducted by OEHHA resulted in 147 unique references on the topic of female reproductive toxicity to VCH and VCD. Of those 147 references, there are 21 female reproductive toxicity references on VCH, and 56 female reproductive toxicity references on VCD. VCD is a model chemical used to induce perimenopause in rodents (Frye et al., 2012). The remaining references resulting from the literature search are abstracts, reviews, theses, and grants on VCH and VCD. Due to the extensive literature available on female reproductive toxicity, a recent review of female reproductive toxicity of VCH published in a peer-reviewed scientific journal is provided (in Appendix B), rather than data tabulations. Citations for the review and studies are provided below, and the full publications have been provided on CD to the DART IC and are available to the public upon request. ### Review (provided in Appendix B) Hoyer, P. B. and I. G. Sipes (2007). "Development of an animal model for ovotoxicity using 4-vinylcyclohexene: a case study". Birth Defects Research. Part B, <u>Developmental Reprod Toxicol</u> 80(2): 113-25. ### Studies of Female Reproductive Toxicity of VCH - Anonymous (1991). "Final report on the reproductive toxicity of 4-vinylcyclohexene (CAS no. 100-40-3) in CD-1-Swiss mice: laboratory supplement". NTIS Technical Report **211268**(315). - Bevan, C., J. C. Stadler, G. S. Elliott, S. R. Frame, J. K. Baldwin, H. W. Leung, E. Moran and A. S. Panepinto (1996). "Subchronic toxicity of 4-vinylcyclohexene in rats and mice by inhalation exposure". Fundam Appl Toxicol **32**(1): 1-10. - Borman, S. M., P. J. Christian, I. G. Sipes and P. B. Hoyer (2000). "Ovotoxicity in female Fischer rats and B6 mice induced by low-dose exposure to three polycyclic aromatic hydrocarbons: comparison through calculation of an ovotoxic index". Toxicol Appl Pharmacol 167(3): 191-8. - Cannady, E. A., C. A. Dyer, P. J. Christian, I. G. Sipes and P. B. Hoyer (2002). "Expression and activity of microsomal epoxide hydrolase in follicles isolated from mouse ovaries". <u>Toxicol Sci</u> **68**(1): 24-31. - Cannady, E. A., C. A. Dyer, P. J. Christian, I. G. Sipes and P. B. Hoyer (2003). "Expression and activity of cytochromes P450 2E1, 2A, and 2B in the mouse ovary: the effect of 4-vinylcyclohexene and its diepoxide metabolite". <u>Toxicol Sci</u> **73**(2): 423-30. - Collins, J. J. and A. G. Manus (1987). "Toxicological evaluation of 4-vinylcyclohexene. I. Prechronic (14-day) and subchronic (13-week) gavage studies in Fischer 344 rats and B6C3F1 mice". J Toxicol Environ Health **21**(4): 493-505. - Collins, J. J., R. J. Montali and A. G. Manus (1987). "Toxicological evaluation of 4-vinylcyclohexene. II. Induction of ovarian tumors in female B6C3F1 mice by chronic oral administration of 4-vinylcyclohexene". <u>J Toxicol Environ Health</u> **21**(4): 507-24. - Doerr, J. K., S. B. Hooser, B. J. Smith and I. G. Sipes (1995). "Ovarian toxicity of 4-vinylcyclohexene and related olefins in B6C3F1 mice: role of diepoxides". <u>Chem Res Toxicol</u> **8**(7): 963-9. - Doerr, J. K. and I. G. Sipes (1996). "Ovarian toxicity and metabolism of 4-vinylcyclohexene and
analogues in B6C3F1 mice: structure-activity study of 4-vinylcyclohexene and analogues". Adv in Exp Med Biol 387: 377-84. - Doerr-Stevens, J. K., J. Liu, G. J. Stevens, J. C. Kraner, S. M. Fontaine, J. R. Halpert and I. G. Sipes (1999). "Induction of cytochrome P-450 enzymes after repeated exposure to 4-vinylcyclohexene in B6C3F1 mice". <u>Drug Metab Dispos</u> **27**(2): 281-7. - Fontaine, S. M., P. B. Hoyer, J. R. Halpert and I. G. Sipes (2001). "Role of induction of specific hepatic cytochrome P450 isoforms in epoxidation of 4-vinylcyclohexene". <u>Drug Metab Dispos</u> **29**(9): 1236-42. - George, J. D., P. A. Fail, T. B. Grizzle, J. J. Heindel and R. E. Chapin (1991). "Final report on the reproductive toxicity of 4-vinylcyclohexene (CAS no. 100-40-3) in CD-1-Swiss mice: final study report and appendices I-II". NTIS Technical Report **211250**(155). - Grizzle, T. B., J. D. George, P. A. Fail, J. C. Seely and J. J. Heindel (1994). "Reproductive effects of 4-vinylcyclohexene in Swiss mice assessed by a continuous breeding protocol". <u>Fundam Appl Toxicol</u> **22**(1): 122-9. - Hooser, S. B., D. P. Douds, D. G. DeMerell, P. B. Hoyer and I. G. Sipes (1994). "Long-term ovarian and gonadotropin changes in mice exposed to 4-vinylcyclohexene". <u>Reprod Toxicol</u> **8**(4): 315-23. - Hooser, S. B., L. R. Parola, E. M. D. Van and I. G. Sipes (1993). "Differential ovotoxicity of 4-vinylcyclohexene and its analog, 4-phenylcyclohexene". <u>Toxicol Appl Pharmacol</u> **119**(2): 302-5. - Keller, D. A., S. C. Carpenter, S. Z. Cagen and F. A. Reitman (1997). "In vitro metabolism of 4-vinylcyclohexene in rat and mouse liver, lung, and ovary". <u>Toxicol Appl Pharmacol</u> **144**(1): 36-44. - Rajapaksa, K. S., E. A. Cannady, I. G. Sipes and P. B. Hoyer (2007). "Involvement of CYP 2E1 enzyme in ovotoxicity caused by 4-vinylcyclohexene and its metabolites". <u>Toxicol Appl</u> Pharmacol **221**(2): 215-21. - Smith, B. J., D. E. Carter and I. G. Sipes (1990). "Comparison of the disposition and in vitro metabolism of 4-vinylcyclohexene in the female mouse and rat". <u>Toxicol Appl Pharmacol</u> **105**(3): 364-71. - Smith, B. J., D. R. Mattison and I. G. Sipes (1990). "The role of epoxidation in 4-vinylcyclohexene-induced ovarian toxicity". <u>Toxicol Appl Pharmacol</u> **105**(3): 372-81. - Smith, B. J., D. R. Plowchalk, I. G. Sipes and D. R. Mattison (1991). "Comparison of random and serial sections in assessment of ovarian toxicity". Reprod Toxicol **5**(4): 379-83. Smith, B. J., I. G. Sipes, J. C. Stevens and J. R. Halpert (1990). "The biochemical basis for the species difference in hepatic microsomal 4-vinylcyclohexene epoxidation between female mice and rats". <u>Carcinogenesis</u> **11**(11): 1951-7. # Vinyl Cyclohexene Dioxide (4-Vinyl-1-Cyclohexene Diepoxide; VCD) Molecular Formula: C₈H₁₂O₂ 4-Vinyl-1-cyclohexene diepoxide is used as a reactive diluent for other diepoxides and for epoxy resins derived from bisphenol A and epichlorohydrin. ### Relevant Studies A relatively large body of relevant data was identified because the compound is a model compound for ovotoxicity. There is one publication on male reproductive and there are no publications on developmental toxicity. Below the publication on male reproductive toxicity is provided first, followed by the tabulation of that study's design parameters and results. Then the publications on female reproductive toxicity are listed. Because of the large number of studies, a recent review of female reproductive toxicity of VCD published in a peer-reviewed scientific journal is provided (in Appendix B), rather than data tabulations. Citations for the review and studies are provided below, and the full publications have been provided on CD to the DART IC and are available to the public upon request. 1. Male Reproductive Toxicity (Summarized in Table) Hooser, S. B., D. G. DeMerell, D. A. Douds, P. Hoyer and I. G. Sipes (1995). "Testicular germ cell toxicity caused by vinylcyclohexene diepoxide in mice". Reprod Toxicol 9(4): 359-67. ## Vinyl Cyclohexene Dioxide (VCD): Study Reporting on Male Reproductive Effects | Reference | | | Experimental Parai | meters | | Endpoints Assessed | Results
(Effects/NOEL/LOEL) | | | |-----------------------|--|--|--|--|--|---|------------------------------------|--|----------| | | Chemical
(Source/
Purity/
Preparation) | Animal
Model
(Species/
Strain/Sex/
Age)
N | Study Design | Exposure
(Route/Period/
Frequency/
Vehicle) | Doses/
Concen-
trations | | Systemic Toxicity | Reproductive Toxicity | Comments | | | VCH 99%
pure
Vinylcyclo-
hexene
diepoxide
(VCD) 97% | B6C3F1
male mice,
4 weeks old
8-10 per
group | VCH, VCD, and
VCM testicular
toxicity
comparison | Intraperitoneal
(i.p.) injection
daily for 30 days
sesame oil | 0 (sesame oil), VCH: 800 mg/kg-d VCD: 160 or 320 mg/kg-d VCM: 200 mg/kg-d | Weights of testis, seminal vesicles Necropsy of testis, epididymis | No data reported | VCH: No effect on weights of testis or seminal vesicles VCD: Reduced weights of testis and seminal vesicles in both dose groups. VCM: No effect on weights of testis or seminal vesicles | | | Hooser et
al. 1995 | pure Vinylcyclo- hexene 1,2- monoepoxide (VCM) 98% pure | B6C3F1 male mice, 4 weeks old 5 mice per group B6C3F1 male mice, 4 weeks old 10 mice per group | VCD time-
course study VCD dose-
response
testicular toxicity
study | i.p.injection daily for 5, 10, 15, 20, 25, or 30 days sesame oil i.p. injection daily for 30 days sesame oil | 0 (sesame oil),
320 mg/kg-d
0 (sesame oil),
40, 80, 160 or
320 mg/kg-d | As above As above | No data reported No data reported | VCD: dosing for ≥ 5 days caused reduced testis weight and testicular degeneration. VCD: dosing at ≥ 80 mg/kg-d for 30 days caused reduced testis weight and testicular degeneration. | | ### 2. Female Reproductive Toxicity The scientific literature on the female reproductive toxicity of 4-vinyl-1-cyclohexene diepoxide (vinyl cyclohexane dioxide; VCD), the primary bioactive metabolite of 4-vinyl cyclohexene (VCH), is extensive. Studies have established that bioactivation of VCH to epoxides is required for its ovotoxicity, with VCD being the most potent epoxide of VCH in terms of follicular depletion. VCD is a model chemical used to induce perimenopause in rodents (Frye et al., 2012). A literature search conducted by OEHHA identified 55 female reproductive toxicity studies on VCD. Seven abstracts regarding female reproductive toxicity of VCD were also identified. Due to the extensive literature available on female reproductive toxicity, a recent review of female reproductive toxicity of VCD published in a peer-reviewed scientific journal is provided (in Appendix B), rather than data tabulations. Citations for the review and studies are provided below, and the full publications have been provided on CD to the DART IC and are available to the public upon request. ### Review (provided in Appendix B) Kappeler, C. J. and P. B. Hoyer (2012). "4-vinylcyclohexene diepoxide: a model chemical for ovotoxicity". <u>Sys Biol in Reprod Med</u> **58**(1): 57-62. ### Studies of Female Reproductive Toxicity of VCD - Acosta, J. I., L. Mayer, J. S. Talboom, C. W. Tsang, C. J. Smith, C. K. Enders and H. A. Bimonte-Nelson (2009). "Transitional versus surgical menopause in a rodent model: etiology of ovarian hormone loss impacts memory and the acetylcholine system". Endocrinol **150**(9): 4248-59. - Appt, S. E., T. B. Clarkson, P. B. Hoyer, N. D. Kock, A. K. Goode, M. C. May, J. T. Persyn, N. K. Vail, K. F. Ethun, H. Chen, N. Sen and J. R. Kaplan (2010). "Experimental Induction of Reduced Ovarian Reserve in a Nonhuman Primate Model (Macaca fascicularis)". Comp Med 60(5): 380-8. - Appt, S. E., J. R. Kaplan, T. B. Clarkson, J. M. Cline, P. J. Christian and P. B. Hoyer (2006). "Destruction of primordial ovarian follicles in adult cynomolgus macaques after exposure to 4-vinylcyclohexene diepoxide: a nonhuman primate model of the menopausal transition". Fert Steril 86(4 Suppl): 1210-6. - Berger, T. and C. M. Horner (2003). "In vivo exposure of female rats to toxicants may affect oocyte quality". Reprod Toxicol **17**(3): 273-81. - Bhattacharya, P., J. A. Madden, N. Sen, P. B. Hoyer and A. F. Keating (2013). "Glutathione S-transferase class μ regulation of apoptosis signal-regulating kinase 1 protein during VCD-induced ovotoxicity in neonatal rat ovaries". <u>Toxicol Appl Pharmacol</u> **267**(1): 49-56. - Bhattacharya, P., N. Sen, P. B. Hoyer and A. F. Keating (2012). "Ovarian expressed microsomal epoxide hydrolase: role in detoxification of 4-vinylcyclohexene diepoxide and regulation by phosphatidylinositol-3 kinase signaling". Toxicol Appl Pharmacol - **258**(1): 118-23. - Borman, S. M., B. J. VanDePol, S. Kao, K. E. Thompson, I. G. Sipes and P. B. Hoyer (1999). "A single dose of the ovotoxicant 4-vinylcyclohexene diepoxide is protective in rat primary ovarian follicles". <u>Toxicol Appl Pharmacol</u> **158**(3): 244-52. - Craig, Z. R., J. R. Davis, S. L. Marion, J. K. Barton and P. B. Hoyer (2010). "7,12-dimethylbenz[a]anthracene induces sertoli-leydig-cell tumors in the follicle-depleted
ovaries of mice treated with 4-vinylcyclohexene diepoxide". Comp Med 60(1): 10-7. - Devine, P. J., I. G. Sipes and P. B. Hoyer (2001). "Effect of 4-vinylcyclohexene diepoxide dosing in rats on GSH levels in liver and ovaries". <u>Toxicol Sci</u> **62**(2): 315-20. - Devine, P. J., I. G. Sipes and P. B. Hoyer (2004). "Initiation of delayed ovotoxicity by in vitro and in vivo exposures of rat ovaries to 4-vinylcyclohexene diepoxide". Reprod Toxicol 19(1): 71-7. - Devine, P. J., I. G. Sipes, M. K. Skinner and P. B. Hoyer (2002). "Characterization of a rat in vitro ovarian culture system to study the ovarian toxicant 4-vinylcyclohexene diepoxide". Toxicol Appl Pharmacol **184**(2): 107-15. - Fernandez, S. M., A. F. Keating, P. J. Christian, N. Sen, J. B. Hoying, H. L. Brooks and P. B. Hoyer (2008). "Involvement of the KIT/KITL signaling pathway in 4-vinylcyclohexene diepoxide-induced ovarian follicle loss in rats". <u>Biol Reprod</u> **79**(2): 318-27. - Flaws, J. A., K. L. Salyers, I. G. Sipes and P. B. Hoyer (1994). "Reduced ability of rat preantral ovarian follicles to metabolize 4-vinyl-1-cyclohexene diepoxide in vitro". Toxicol Appl Pharmacol **126**(2): 286-94. - Frye, J. B., A. L. Lukefahr, L. E. Wright, S. L. Marion, P. B. Hoyer and J. L. Funk (2012). "Modeling perimenopause in Sprague-Dawley rats by chemical manipulation of the transition to ovarian failure". Comp Med **62**(3): 193-202. - Haas, J. R., P. J. Christian and P. B. Hoyer (2007). "Effects of impending ovarian failure induced by 4-vinylcyclohexene diepoxide on fertility in C57BL/6 female mice". <u>Comp Med 57(5)</u>: 443-9. - Hoyer, P. B., E. A. Cannady, N. A. Kroeger and I. G. Sipes (2001). "Mechanisms of ovotoxicity induced by environmental chemicals: 4-vinylcyclohexene diepoxide as a model chemical". Adv in Exp MedBiol **500**: 73-81. - Hoyer, P. B., J. R. Davis, J. B. Bedrnicek, S. L. Marion, P. J. Christian, J. K. Barton and M. A. Brewer (2009). "Ovarian neoplasm development by 7,12-dimethylbenz[a]anthracene (DMBA) in a chemically-induced rat model of ovarian failure". Gyn Oncol 112(3): 610-5. - Hoyer, P. B., P. J. Devine, X. Hu, K. E. Thompson and I. G. Sipes (2001). "Ovarian toxicity of 4-vinylcyclohexene diepoxide: a mechanistic model". <u>Toxicol Path</u> **29**(1): 91-9. - Hu, X., P. Christian, I. G. Sipes and P. B. Hoyer (2001). "Expression and redistribution of cellular Bad, Bax, and Bcl-X(L) protein is associated with VCD-induced ovotoxicity in rats". <u>Biol Reprod</u> **65**(5): 1489-95. - Hu, X., P. J. Christian, K. E. Thompson, I. G. Sipes and P. B. Hoyer (2001). "Apoptosis induced in rats by 4-vinylcyclohexene diepoxide is associated with activation of the caspase cascades". Biol Reprod **65**(1): 87-93. - Hu, X., J. A. Flaws, I. G. Sipes and P. B. Hoyer (2002). "Activation of mitogen-activated protein kinases and AP-1 transcription factor in ovotoxicity induced by 4-vinylcyclohexene diepoxide in rats". <u>Biol Reprod</u> **67**(3): 718-24. - Hu, X., J. R. Roberts, P. L. Apopa, Y. W. Kan and Q. Ma (2006). "Accelerated ovarian failure induced by 4-vinyl cyclohexene diepoxide in Nrf2 null mice". Molec Cell Biol **26**(3): 940-54. - Ito, A., N. Mafune and T. Kimura (2009). "Collaborative work on evaluation of ovarian toxicity. 4) Two- or four-week repeated dose study of 4-vinylcyclohexene diepoxide in female rats". <u>J Toxicol Sci</u> **34** Suppl 1: SP53-8. - Kao, S. W., I. G. Sipes and P. B. Hoyer (1999). "Early effects of ovotoxicity induced by 4-vinylcyclohexene diepoxide in rats and mice". Reprod Toxicol **13**(1): 67-75. - Keating, A. F., S. M. Fernandez, C. J. Mark-Kappeler, N. Sen, I. G. Sipes and P. B. Hoyer (2011). "Inhibition of PIK3 signaling pathway members by the ovotoxicant 4-vinylcyclohexene diepoxide in rats". <u>Biol Reprod</u> **84**(4): 743-51. - Keating, A. F., M. C. J, N. Sen, I. G. Sipes and P. B. Hoyer (2009). "Effect of phosphatidylinositol-3 kinase inhibition on ovotoxicity caused by 4-vinylcyclohexene diepoxide and 7, 12-dimethylbenz[a]anthracene in neonatal rat ovaries". <u>Toxicol Appl Pharmacol</u> **241**(2): 127-34. - Keating, A. F., K. S. Rajapaksa, I. G. Sipes and P. B. Hoyer (2008). "Effect of CYP2E1 gene deletion in mice on expression of microsomal epoxide hydrolase in response to VCD exposure". <u>Toxicol Sci</u> **105**(2): 351-9. - Keating, A. F., N. Sen, I. G. Sipes and P. B. Hoyer (2010). "Dual protective role for glutathione S-transferase class pi against VCD-induced ovotoxicity in the rat ovary". Toxicol Appl Pharmacol **247**(2): 71-5. - Keating, A. F., I. G. Sipes and P. B. Hoyer (2008). "Expression of ovarian microsomal epoxide hydrolase and glutathione S-transferase during onset of VCD-induced ovotoxicity in B6C3F(1) mice". Toxicol Appl Pharmacol 230(1): 109-16. - Keck, M., M. J. Romero-Aleshire, Q. Cai, P. B. Hoyer and H. L. Brooks (2007). "Hormonal status affects the progression of STZ-induced diabetes and diabetic renal damage in the VCD mouse model of menopause". <u>American Journal of Physiology Regulatory, Integrative and Comparative Physiology</u> **293**(1): F193-F9. - Kodama, T., J. Yoshida, T. Miwa, D. Hasegawa and T. Masuyama (2009). "Collaborative work on evaluation of ovarian toxicity. 4) Effects of fertility study of 4-vinylcyclohexene diepoxide in female rats J Toxicol Sci **34** Suppl 1: SP59-63. - Laviolette, L. A., J. F. Ethier, M. K. Senterman, P. J. Devine and B. C. Vanderhyden (2011). "Induction of a menopausal state alters the growth and histology of ovarian tumors in a mouse model of ovarian cancer". <u>Menopause</u> **18**(5): 549-57. - Lohff, J. C., P. J. Christian, S. L. Marion, A. Arrandale and P. B. Hoyer (2005). "Characterization of cyclicity and hormonal profile with impending ovarian failure in a novel chemical-induced mouse model of perimenopause". <u>Comp Med 55(6)</u>: 523-7. - Lohff, J. C., P. J. Christian, S. L. Marion and P. B. Hoyer (2006). "Effect of duration of dosing on onset of ovarian failure in a chemical-induced mouse model of perimenopause". Menopause **13**(3): 482-8. - Lukefahr, A. L., J. B. Frye, L. E. Wright, S. L. Marion, P. B. Hoyer and J. L. Funk (2012). "Decreased bone mineral density in rats rendered follicle-deplete by an ovotoxic chemical correlates with changes in follicle-stimulating hormone and inhibin A". Calcified Tissue International **90**(3): 239-49. - Mark-Kappeler, C. J., N. Sen, A. F. Keating, I. G. Sipes and P. B. Hoyer (2010). - "Distribution and responsiveness of rat anti-Mllerian hormone during ovarian development and VCD-induced ovotoxicity". <u>Toxicol Appl Pharmacol</u> **249**(1): 1-7. - Mark-Kappeler, C. J., N. Sen, A. Lukefahr, L. McKee, I. G. Sipes, J. Konhilas and P. B. Hoyer (2011). "Inhibition of ovarian KIT phosphorylation by the ovotoxicant 4-vinylcyclohexene diepoxide in rats". <u>Biol Reprod</u> **85**(4): 755-62. - Mayer, L. P., P. J. Devine, C. A. Dyer and P. B. Hoyer (2004). "The follicle-deplete mouse ovary produces androgen". Biol Reprod **71**(1): 130-8. - Mayer, L. P., C. A. Dyer, R. L. Eastgard, P. B. Hoyer and C. L. Banka (2005). "Atherosclerotic lesion development in a novel ovary-intact mouse model of perimenopause". <u>Arteriosclerosis Thrombosis Vascular Biol</u> **25**(9): 1910-6. - Mayer, L. P., N. A. Pearsall, P. J. Christian, P. J. Devine, C. M. Payne, M. K. McCuskey, S. L. Marion, I. G. Sipes and P. B. Hoyer (2002). "Long-term effects of ovarian follicular depletion in rats by 4-vinylcyclohexene diepoxide". Reprod Toxicol **16**(6): 775-81. - Muhammad, F. S., A. K. Goode, N. D. Kock, E. A. Arifin, J. M. Cline, M. R. Adams, P. B. Hoyer, P. J. Christian, S. Isom, J. R. Kaplan and S. E. Appt (2009). "Effects of 4-vinylcyclohexene diepoxide on peripubertal and adult Sprague-Dawley rats: ovarian, clinical, and pathologic outcomes". Comp Med 59(1): 46-59. - Rivera, Z., P. J. Christian, S. L. Marion, H. L. Brooks and P. B. Hoyer (2009). "Steroidogenic capacity of residual ovarian tissue in 4-vinylcyclohexene diepoxide-treated mice". Biol Reprod **80**(2): 328-36. - Romero-Aleshire, M. J., M. K. Diamond-Stanic, A. H. Hasty, P. B. Hoyer and H. L. Brooks (2009). "Loss of ovarian function in the VCD mouse-model of menopause leads to insulin resistance and a rapid progression into the metabolic syndrome". 297(3): R587-92. - Sahambi, S. K., J. A. Visser, A. P. Themmen, L. P. Mayer and P. J. Devine (2008). "Correlation of serum anti-Mllerian hormone with accelerated follicle loss following 4-vinylcyclohexene diepoxide-induced follicle loss in mice". Reprod Toxicol 26(2): 116-22. - Schauwecker, P. E., R. I. Wood and A. Lorenzana (2009). "Neuroprotection against excitotoxic brain injury in mice after ovarian steroid depletion". Brain Res **1265**: 37-46. - Sobinoff, A. P., V. Pye, B. Nixon, S. D. Roman and E. A. McLaughlin (2010). "Adding insult to injury: effects of xenobiotic-induced preantral ovotoxicity on ovarian development and oocyte fusibility". <u>Toxicol Sci</u> **118(**2): 653-66. - Springer, L. N., J. A. Flaws, I. G. Sipes and P. B. Hoyer (1996). "Follicular mechanisms associated with 4-vinylcyclohexene diepoxide-induced ovotoxicity in rats". Reprod Toxicol 10(2): 137-43. - Springer, L. N., M. E. McAsey, J. A. Flaws, J. L. Tilly, I. G. Sipes and P. B. Hoyer (1996). "Involvement of apoptosis in 4-vinylcyclohexene diepoxide-induced ovotoxicity in rats". <u>Toxicol Appl Pharmacol</u> **139**(2): 394-401. - Springer, L. N., J. L. Tilly, I. G. Sipes and P. B. Hoyer (1996). "Enhanced expression of bax in small preantral follicles during 4-vinylcyclohexene diepoxide-induced ovotoxicity in the rat". Toxicol Appl Pharmacol **139**(2): 402-10. - Takai, Y., J. Canning, G. I. Perez, J. K. Pru, J. J. Schlezinger, D. H. Sherr, R. N. Kolesnick, J. Yuan, R. A. Flavell, S. J. Korsmeyer and J. L. Tilly (2003). "Bax, caspase-2, and - caspase-3 are required for ovarian
follicle loss caused by 4-vinylcyclohexene diepoxide exposure of female mice in vivo". Endocrinol **144**(1): 69-74. - Thompson, K. E., S. M. Bourguet, P. J. Christian, J. C. Benedict, I. G. Sipes, J. A. Flaws and P. B. Hoyer (2005). "Differences between rats and mice in the involvement of the aryl hydrocarbon receptor in 4-vinylcyclohexene diepoxide-induced ovarian follicle loss". <u>Toxicol Appl Pharmacol</u> **203**(2): 114-23. - Thompson, K. E., I. G. Sipes, B. D. Greenstein and P. B. Hoyer (2002). "17beta-estradiol affords protection against 4-vinylcyclohexene diepoxide-induced ovarian follicle loss in Fischer-344 rats". Endocrinol **143**(3): 1058-65. - Van Kempen, T. A., T. A. Milner and E. M. Waters (2011). "Accelerated Ovarian Failure: A novel, chemically induced animal model of menopause". <u>Brain Res</u> **1379**: 176-87. - Wright, L. E., P. J. Christian, Z. Rivera, A. W. G. Van, J. L. Funk, M. L. Bouxsein and P. B. Hoyer (2008). "Comparison of skeletal effects of ovariectomy versus chemically induced ovarian failure in mice". J Bone Mineral Res **23**(8): 1296-303. - Wright, L. E., J. B. Frye, A. L. Lukefahr, S. L. Marion, P. B. Hoyer, D. G. Besselsen and J. L. Funk (2011). "4-Vinylcyclohexene diepoxide (VCD) inhibits mammary epithelial differentiation and induces fibroadenoma formation in female Sprague Dawley rats". Reprod Toxicol 32(1): 26-32. ### Appendix A # Parameters for Computerized Literature Searches on the Reproductive Toxicity of Chemicals Searches of the literature on the reproductive and developmental toxicity of the chemicals in Table 1 were conducted under contract by the University of California at Berkeley (Charleen Kubota, M.L.I.S.). The goal was to identify peer-reviewed open source and proprietary journal articles, print and digital books, reports and gray literature that potentially reported relevant toxicological and epidemiological information on the reproductive toxicity of the chemicals. The search sought to specifically identify all literature relevant to the assessment of evidence on male reproductive, female reproductive and developmental toxicity. #### **Databases** The literature search utilized following search platforms/database vendors: **ChemSpider** (Royal Society of Chemistry) **MeSH** (Medical Subject Headings) (National Library of Medicine) <u>Developmental and Reproductive Toxicology Database</u> (DART/ETIC) (National Library of Medicine) EMBASE® (Elsevier) **Environmental Sciences and Pollution Management (Proquest)** **PubMed (National Library of Medicine)** National Technical Research Library (NTRL v3.0) (National Technical Information Service) ReproRisk® System: REPROTEXT® Reproductive Hazard Reference, REPROTOX® Reproductive Hazard Information, Shepard's Catalog of Teratogenic Agents, TERIS Teratogen Information System (RightAnswer® Knowledge Solutions OnSite™ Applications) **Scifinder®: CAS (Chemical Abstracts Service)** **TOXLINE** (National Library of Medicine) Web of Knowledge: BIOSIS Previews®, Web of Science® (Thomson-Reuters, Inc.) #### **Search Process** ChemSpider was searched first to gather chemical names, synonyms, CAS registry numbers, MeSH and Chemical Abstracts Service headings for each substance before searching bibliographic databases. The MeSH database was used to identify relevant subject headings for reproductive and developmental toxicology endpoints. Relevant subject terms were entered into the PubMed Search Builder to execute a PubMed search. The following is a typical DART chemical search strategy used to search PubMed: ("chemical name" [MeSh] OR CAS registry number[RN]) AND ("Congenital Abnormalities"[MeSh] OR "Pregnancy Complications"[MeSh] OR "Reproductive Physiological Phenomena"[MeSh] OR "Embryonic and Fetal Development"[MeSH]) In PubMed, MeSH (Medical Subject Headings) terms at the top of hierarchical lists of subject headings are automatically "exploded" in a search to retrieve citations with more specific MeSH terms. For example, the heading "congenital abnormalities" includes numerous specific conditions such as spina bifida and congenital heart defects. The broad subject heading "Pregnancy Complications" encompasses multiple conditions or pathological processes associated with pregnancy. Spontaneous abortion and many fetal diseases are listed under this term. Additional databases listed above were then searched for each chemical. The search strategies were tailored according to the search features unique to each database. Web of Science, for example, was searched by entering chemical terms and refining the search by applying Web of Science categories Developmental Biology, Toxicology and/or Public, Environmental and Occupational Health. Sometimes other databases not listed here were searched as needed. For example, if there is a known behavioral endpoint linked to chemical exposure, a social science database such as PsycINFO® would be searched. ### **Appendix B** # Reviews of the Female Reproductive Toxicity of 4-Vinyl-Cyclohexene and its Metabolite, Vinyl Cyclohexene Dioxide The DART IC has been provided in this appendix the published reviews listed below. The public will be provided these reviews upon request. - Hoyer, P. B. and I. G. Sipes (2007). "Development of an animal model for ovotoxicity using 4-vinylcyclohexene: a case study". Birth Defects Research. Part B, <u>Developmental and Reproductive Toxicology</u> 80(2): 113-25. - Kappeler, C. J. and P. B. Hoyer (2012). "4-vinylcyclohexene diepoxide: a model chemical for ovotoxicity". <u>Systems Biology in Reproductive Medicine</u> **58**(1): 57-62.