
 

 

 

 

OFFICE OF ENVIRONMENTAL HEALTH HAZARD 
ASSESSMENT 

Proposition 65 

Prioritization:  
Chemicals Identified for 
Consultation 
with the Developmental and 
Reproductive Toxicant 
Identification Committee 

October 2020 

California Environmental Protection Agency 
Office of Environmental Health Hazard Assessment 
Reproductive and Cancer Hazard Assessment Branch 



 

 

Page Intentionally Left Blank   



Prioritization: i Office of Environmental Health 
Chemicals for DARTIC Consultation  Hazard Assessment 
  October 2020 

Table of Contents 
Summary ......................................................................................................................... 1 

Part I.  2020 Application of the Prioritization Process to Identify Chemicals for 
Consultation with the Developmental and Reproductive Toxicant 
Identification Committee ...................................................................................... 1 

Introduction .................................................................................................................. 1 

Chemicals Screened ................................................................................................... 2 

Applying the Epidemiology Data Screen...................................................................... 2 

Applying the Animal Data Screen ................................................................................ 3 

Preliminary Toxicological Evaluation ........................................................................... 5 

Chemicals Proposed for DARTIC Consideration ......................................................... 5 

Next Steps ................................................................................................................... 8 

References cited in Part I ............................................................................................ 8 

Part II.  Chemicals Identified for Consultation with the Developmental and 
Reproductive Toxicant Identification Committee ................................................. 9 

Benzophenone-3 ......................................................................................................... 9 

Human epidemiologic studies ................................................................................ 10 

Animal studies ........................................................................................................ 12 

Mechanistic, in vitro and other relevant data .......................................................... 14 

References cited in “BP-3” ..................................................................................... 16 

Bisphenol S (BPS) ..................................................................................................... 21 

Human epidemiologic studies ................................................................................ 21 

Animal studies ........................................................................................................ 23 

Mechanistic, in vitro, and other relevant data ......................................................... 26 

References cited in “BPS” ...................................................................................... 27 

Diazinon ..................................................................................................................... 33 

Human epidemiologic studies ................................................................................ 33 

Animal studies ........................................................................................................ 35 

Mechanistic, in vitro, and other relevant data ......................................................... 38 

References cited in “Diazinon” ............................................................................... 39 



Prioritization: ii Office of Environmental Health 
Chemicals for DARTIC Consultation  Hazard Assessment 
  October 2020 

Diethyl phthalate (DEP) ............................................................................................. 42 

Human epidemiologic studies ................................................................................ 44 

Animal studies ........................................................................................................ 44 

Mechanistic, in vitro, and other relevant data ......................................................... 45 

References cited in “DEP” ...................................................................................... 46 

Domoic acid ............................................................................................................... 49 

Human epidemiologic studies ................................................................................ 49 

Animal studies ........................................................................................................ 50 

Mechanistic, in vitro, and other relevant data ......................................................... 53 

References cited in “Domoic acid” ......................................................................... 53 

Glyphosate and its salts............................................................................................. 58 

Human epidemiologic studies ................................................................................ 58 

Animal studies ........................................................................................................ 59 

Mechanistic, in vitro, and other relevant data ......................................................... 62 

References cited in “Glyphosate and its salts” ....................................................... 63 

Manganese ................................................................................................................ 67 

Human epidemiologic studies ................................................................................ 67 

Animal studies ........................................................................................................ 71 

Mechanistic, in vitro and other relevant data .......................................................... 74 

References cited in “Manganese” .......................................................................... 75 

Neonicotinoid pesticides: ............................................................................................... 80 

Acetamiprid ................................................................................................................ 80 

Human epidemiologic studies ................................................................................ 80 

Animal studies ........................................................................................................ 80 

Mechanistic, in vitro, and other relevant data ......................................................... 83 

References cited in “Acetamiprid” .......................................................................... 84 

Clothianidin ................................................................................................................ 86 

Human epidemiologic studies ................................................................................ 86 

Animal studies ........................................................................................................ 86 



Prioritization: iii Office of Environmental Health 
Chemicals for DARTIC Consultation  Hazard Assessment 
  October 2020 

Mechanistic, in vitro, and other relevant data ......................................................... 89 

References cited in “Clothianidin” .......................................................................... 89 

Imidacloprid ............................................................................................................... 91 

Human epidemiologic studies ................................................................................ 91 

Animal studies ........................................................................................................ 92 

Mechanistic, in vitro, and other relevant data ......................................................... 97 

References cited in “Imidacloprid” .......................................................................... 97 

Thiamethoxam ......................................................................................................... 101 

Human epidemiologic studies .............................................................................. 101 

Animal studies ...................................................................................................... 101 

Mechanistic, in vitro, and other relevant data ....................................................... 103 

References cited in “Thiamethoxam” ................................................................... 103 

Parabens: .................................................................................................................... 105 

Butyl paraben .......................................................................................................... 105 

Human epidemiologic studies .............................................................................. 105 

Animal studies ...................................................................................................... 106 

Mechanistic, in vitro, and other relevant data ....................................................... 109 

References cited in “Butyl paraben” ..................................................................... 109 

Isobutyl paraben ...................................................................................................... 113 

Human epidemiologic studies .............................................................................. 113 

Animal studies ...................................................................................................... 113 

Mechanistic, in vitro, and other relevant data ....................................................... 114 

Referenes cited in “Isobutyl paraben” .................................................................. 115 

Methyl paraben ........................................................................................................ 116 

Human epidemiologic studies .............................................................................. 116 

Animal studies ...................................................................................................... 118 

Mechanistic, in vitro, and other relevant data ....................................................... 119 

References cited in “Methyl paraben” .................................................................. 119 

Propyl paraben ........................................................................................................ 123 



Prioritization: iv Office of Environmental Health 
Chemicals for DARTIC Consultation  Hazard Assessment 
  October 2020 

Human epidemiologic studies .............................................................................. 123 

Animal studies ...................................................................................................... 125 

References cited in “Propyl paraben” ................................................................... 126 

Per- and polyfluorinated substances (PFASs): ............................................................ 129 

Perfluorodecanoic acid (PFDA) ............................................................................... 129 

Human epidemiologic studies .............................................................................. 131 

Animal studies ...................................................................................................... 134 

Mechanistic, in vitro, and other relevant data ....................................................... 134 

References cited in “PFDA” .................................................................................. 134 

Perfluorohexanesulfonic acid (PFHxS) .................................................................... 139 

Human epidemiologic studies .............................................................................. 141 

Animal studies ...................................................................................................... 144 

Mechanistic, in vitro, and other relevant data ....................................................... 144 

References cited in “PFHxS” ................................................................................ 145 

Perfluorononanoic acid (PFNA) ............................................................................... 148 

Human epidemiologic studies .............................................................................. 150 

Animal studies ...................................................................................................... 153 

Mechanistic, in vitro, and other relevant data ....................................................... 153 

References cited in “PFNA” .................................................................................. 153 

Perfluoroundecanoic acid (PFUnDA) ....................................................................... 158 

Human epidemiologic studies .............................................................................. 160 

Animal studies ...................................................................................................... 161 

References cited in “PFUnDA” ............................................................................. 161 

Titanium dioxide nanoparticles (TiO2 np) ................................................................. 164 

Human epidemiologic studies .............................................................................. 164 

Animal studies ...................................................................................................... 164 

Mechanistic, in vitro, and other relevant data ....................................................... 168 

References cited in “TiO2 np” ............................................................................... 168 

Vinpocetine .............................................................................................................. 173 



Prioritization: v Office of Environmental Health 
Chemicals for DARTIC Consultation  Hazard Assessment 
  October 2020 

Human epidemiologic studies .............................................................................. 173 

Animal studies ...................................................................................................... 173 

Mechanistic, in vitro, and other relevant data ....................................................... 174 

References cited in “Vinpocetin” .......................................................................... 174 

Zearalenone (ZEA) .................................................................................................. 176 

Human epidemiologic studies .............................................................................. 177 

Animal studies ...................................................................................................... 177 

Mechanistic, in vitro, and other relevant data ....................................................... 180 

References cited in “ZEA” .................................................................................... 181 

 

 



Prioritization: 1 Office of Environmental Health 
Chemicals for DARTIC Consultation  Hazard Assessment 
  October 2020 

Summary 

The Office of Environmental Health Hazard Assessment (OEHHA) is proposing 22 
chemicals or chemical groups for prioritization review by the Developmental and 
Reproductive Toxicant Identification Committee (DARTIC), using the prioritization 
process endorsed by the DARTIC and adopted by OEHHA in 2004.  These chemicals 
are not proposed for listing at this time.  OEHHA is seeking public comment and the 
DARTIC’s consultation regarding which, if any, of these chemicals should proceed to 
the next stage of the listing process.  The public comment period will end on November 
16, 2020.  

After receiving advice on priority from the DARTIC, OEHHA will choose chemicals for 
consideration for potential listing by the DARTIC at future meetings. 

Part I.  2020 Application of the Prioritization Process to Identify 
Chemicals for Consultation with the Developmental and Reproductive 
Toxicant Identification Committee 

Introduction 

OEHHA’s 2004 “Process for Prioritizing Chemicals for Consideration under Proposition 
65 by the “State’s Qualified Experts” (available at 
http://oehha.ca.gov/media/downloads/proposition-65/document/finalpriordoc.pdf), 
describes the process OEHHA follows to identify chemicals for DARTIC consultation.  
This process can be briefly summarized as follows:  

• OEHHA maintains a tracking database of chemicals that have come to OEHHA’s 
attention through a variety of avenues (e.g., literature searches, suggestions 
from the DARTIC, other state programs, the scientific community, or the general 
public) for developmental and reproductive toxicity (DART) evaluation.  

• OEHHA identifies chemicals with some evidence of reproductive hazard and the 
potential for human exposure in California as “candidate chemicals”. 

• Hazard data screens are applied to the results of focused literature searches 
conducted on candidate chemicals.  

• Chemicals that pass at least one of the applied data screens are then subjected 
to a preliminary toxicological evaluation.  The preliminary toxicological evaluation 
entails consideration of the available overall evidence of reproductive hazard 
(e.g., epidemiology, animal bioassay, other relevant information), but it is of 

http://oehha.ca.gov/media/downloads/proposition-65/document/finalpriordoc.pdf
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necessity an initial, abbreviated appraisal of the information identified through 
screening-level literature searches.  

• Based on this preliminary toxicological evaluation procedure, OEHHA identifies 
chemicals or chemical groups for consultation with the DARTIC. 

In this most recent application of the prioritization process, OEHHA applied both a 
human and an animal data screen to candidate chemicals in its tracking database.  
OEHHA identified 22 chemicals or chemical groups (see Table 1 below) for Committee 
discussion, advice, and consultation. 

This document presents information on these chemicals or chemical groups.  For each, 
an initial, abbreviated appraisal of the scientific information identified through the 
screening-level literature search and the preliminary toxicological evaluation is 
presented.   

At its upcoming meeting, the DARTIC will provide advice and consultation regarding 
possible development of hazard identification materials for these chemicals, as 
described in “Next Steps” below.  The following is a description of the process OEHHA 
conducted that led to the identification of the chemicals that will be presented to the 
DARTIC. 

Chemicals Screened 

Under this process, only candidate chemicals (or chemical groups) are screened.  
These are chemicals in the tracking database with data suggesting that they cause 
reproductive toxicity and have exposure potential in California.  The evaluation of 
exposure potential is qualitative, based primarily on production, use, or monitoring data. 

OEHHA applied both a human and an animal data screen to candidate chemicals in the 
tracking database.  Of the chemicals screened as of July 2020, those meeting either the 
human epidemiology or animal data screen were subjected to preliminary toxicological 
evaluation. 

Chemicals that are candidates for listing via an administrative mechanism were not 
screened. 

Applying the Epidemiology Data Screen 

The epidemiology data screen was applied to candidate chemicals.  The screen entails 
the identification of chemicals with epidemiologic studies suggesting evidence of 
adverse developmental or reproductive effects.  The screen involves finding relevant 
analytical epidemiology studies through a literature search and evaluating them to 
identify studies reporting an association between exposure to the chemical and 
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increased risk of adverse developmental or reproductive effects.  For those chemicals 
with studies available, the abstracts were reviewed to determine whether there was a 
report of developmental or reproductive toxicity associated with exposure to the 
chemical and whether the effect might be attributed to the chemical with some 
confidence.  Two or more acceptable1 analytical studies reporting adverse effects for 
the same major DART endpoint (i.e., developmental, female reproductive, or male 
reproductive effects) were required for the chemical to pass the screen.   

For each chemical, the steps used in applying the epidemiology data screen were as 
follows: 

1. The chemical’s Chemical Abstracts Service (CAS) Registry Number and 
synonyms were identified using the US EPA Chemical Dashboard 
(https://comptox.epa.gov/dashboard). 

2. The chemical identifiers were used in a search of the literature, using PubMed 
(https://pubmed.ncbi.nlm.nih.gov).  The search included the chemical name and 
a string of DART-related search terms developed in consultation with the OEHHA 
librarian.  Further refinement of the search was performed if necessary (e.g., 
enormous volume of articles returned).  Searches of PubChem and other 
databases were also conducted as needed. 

3. Epidemiologic studies were identified from the titles retrieved in the online 
search. 

4. DART-related effects reported in epidemiologic studies were identified from the 
titles and abstracts retrieved in the online search; in some cases such 
identification required retrieval of the full article.     

5. Articles identified as potentially relevant were considered in assessing whether 
they provide evidence of human developmental or reproductive toxicity that is 
related to exposure to the chemical. 

Applying the Animal Data Screen 

The animal data screen involves finding relevant animal studies examining possible 
DART effects through a literature search and evaluating study findings with regard to 
the screening criteria.   

                                            
1 For the purposes of prioritization, acceptable analytical studies are defined as those with 1) exposed 
and non-exposed groups, or with groups that have different exposure levels, and 2) both participants with 
the DART outcome and participants without the DART outcome, and 3) a temporal component that 
establishes that exposure preceded the DART outcome.   
 

https://comptox.epa.gov/dashboard
https://pubmed.ncbi.nlm.nih.gov/
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To pass the animal screen at least one of the following criteria were met: 

• A minimum of one in vivo DART study that meets guideline2 (US EPA or OECD) 
standards for methodology and reporting, and which reports at least one 
statistically significant DART outcome. 

• A minimum of one in vivo, non-DART, guideline-quality toxicity study3 that 
provides statistically significant evidence of at least one DART outcome in 
accordance with US EPA Guidelines for Reproductive Toxicity Risk 
Assessment4. 

• A minimum of five in vivo studies that do not meet guideline standards but which 
taken together appear to support a relationship between exposure and one or 
more specific DART outcomes. 

• Results from a minimum of one in vitro5 or non-standard species6 experiment   
reporting disruption of essential developmental or reproductive processes, 
combined with in vivo data indicating that the upstream effect would result in one 
or more DART outcomes. 

For each chemical, the steps used in applying the animal data screen were as follows:  

1. The chemical’s Chemical Abstracts Service (CAS) Registry Number and 
synonyms were identified using the US EPA Chemical Dashboard 
(https://comptox.epa.gov/dashboard). 

2. The chemical identifiers were used in a search of the literature, using PubMed 
(https://pubmed.ncbi.nlm.nih.gov).  The search included the chemical name and 
a string of DART-related search terms developed in consultation with the OEHHA 
librarian.  Further refinement of the search was performed if necessary (e.g., 
enormous volume of articles returned).  Searches of PubChem and other 
databases were also conducted as needed. 

3. Animal studies were identified from the titles retrieved in the online search. 

                                            
2 Guideline studies are typically conducted using a rodent or rabbit model, but other mammalian species 
may be acceptable.   
3 Examples of relevant study types include: chronic or subchronic toxicity studies, or cancer bioassays.   
4 US Environmental Protection Agency (US EPA, 1996). Guidelines for Reproductive Toxicity Risk 
Assessment. Federal Register 61(212): 56274-56322. 
5 Typically, but not limited to, primary cell or organ culture experimental systems focused on effects such 
as expression of specific genes, binding of specific receptors known to be necessary for normal 
developmental events to occur, disruption of biochemical events known to be necessary for normal 
developmental events to occur, disruption of cell differentiation, etc. Protocols may involve exposure in 
vivo or in vitro, with further experimental elements performed in vitro. Experimental focus should be 
validated by targeted in vivo experiments, ideally in mammalian species but not necessarily as part of a 
“Guideline” type protocol.   
6 Non-mammalian test species, such as zebrafish, which commonly serve as model systems for potential 
DART effects.   

https://comptox.epa.gov/dashboard
https://pubmed.ncbi.nlm.nih.gov/
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4. DART-related effects reported in animal studies were identified from the titles 
and abstracts retrieved in the online search; in some cases such identification 
required retrieval of the full article.  

5. Articles identified as potentially relevant were considered in assessing whether 
the animal data screen employed in this round of prioritization had been met for 
the chemical in question. 

Preliminary Toxicological Evaluation 

OEHHA conducted a preliminary toxicological evaluation of chemicals identified through 
application of the human and animal data screens.  Additional information relevant to 
DART, such as studies on mechanisms of action, metabolism, and pharmacokinetics 
were taken into consideration in the preliminary toxicological evaluation.  Chemicals for 
which the overall evidence indicated that developmental or reproductive toxicity may be 
a concern are being proposed here for DARTIC consideration. 

Chemicals Proposed for DARTIC Consideration 

OEHHA identified the 22 chemicals or chemical groups listed in Table 1 below for 
possible preparation of hazard identification materials.  At its next meeting, the DARTIC 
will provide OEHHA with advice on the prioritization of these chemicals for possible 
preparation of hazard identification materials. 

For each of the chemicals, OEHHA has compiled a separate overview of the relevant 
findings from studies that were identified during the preliminary toxicological evaluation 
and these are presented later in this document. 

An overview of the exposure characteristics for each of the chemicals is presented in 
Table 2, below.   
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Table 1. Chemicals Identified through Prioritization and Proposed for 
Consideration by the DARTIC 

Chemical CAS Registry Number 
Benzophenone-3  131-57-7 

Bisphenol S (BPS)   80-09-1 

Diazinon 333-41-5 

Diethylphthalate (DEP)  84-66-2 

Domoic acid  14277-97-5 

Glyphosate and its salts  --- 

Manganese  7439-96-5 

Neonicotinoid pesticides 
   Acetamiprid 135410-20-7 

   Clothianidin 210880-92-5 

   Imidacloprid 138261-41-3 

   Thiamethoxam 153719-23-4 

Parabens 
   Butyl paraben 94-26-8 

   Isobutyl paraben 4247-02-3 

   Methyl paraben 99-76-3 

   Propyl paraben 94-13-3 

Per- and polyfluorinated substances (PFASs) 
   Perfluorodecanoic acid (PFDA) 335-76-2 

   Perfluorohexanesulfonic acid (PFHxS) 355-46-4 

   Perfluorononanoic acid (PFNA) 375-95-1 

   Perfluoroundecanoic acid (PFUnDA) 2058-94-8 

Titanium dioxide nanoparticles --- 

Vinpocetine 42971-09-5 

Zearalenone  17924-92-4 
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Table 2. Exposure Characteristics of Chemicals for DARTIC Consultation   

 Chemical 
Exposure 

Widespread High in frequent 
consumers 

Limited / 
occupational 

High in infrequent 
consumers 

Benzophenone-3  

 ✓ ✓   

Bisphenol S (BPS)   ✓    
Diazinon ✓  ✓  
Diethylphthalate (DEP)  ✓    
Domoic acid    ✓  
Glyphosate and its 
salts  

✓ 
 

✓ 
 

Manganese  ✓  ✓  
Neonicotinoid pesticides 

Acetamiprid ✓  ✓  
Clothianidin ✓  ✓  
Imidacloprid ✓  ✓  
Thiamethoxam ✓  ✓  

Parabens 
Butyl paraben ✓ ✓   
Isobutyl paraben ✓ ✓   
Methyl paraben ✓ ✓   
Propyl paraben ✓ ✓   

PFASs 
PFDA ✓    
PFHxS ✓    
PFNA ✓    
PFUnDA ✓    

Titanium dioxide 
nanoparticles 

✓ ✓ 
  

Vinpocetine  ✓  ✓ 
Zearalenone  ✓ ✓   
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Next Steps  

The DARTIC will consider the chemicals in Table 1 at its next meeting, providing advice 
and consultation regarding possible development of hazard identification materials by 
OEHHA.  Written public comments received by OEHHA will be provided to the DARTIC 
for consideration.  The public is also given the opportunity at the DARTIC meeting to 
comment on the chemicals being proposed for hazard identification materials 
preparation. 

The DARTIC may also suggest chemicals other than these 22 for which hazard 
identification materials should be prepared.  The DARTIC can provide informal advice to 
OEHHA concerning which chemicals should be brought back for their consideration for 
listing.   

OEHHA will then choose which chemical(s) to prepare hazard identification materials 
summarizing the available scientific evidence on the chemicals’ potential to cause 
developmental or reproductive toxicity following a comprehensive search and evaluation 
of the scientific literature.  These materials will be provided to the DARTIC, and 
released for public comment, prior to the public meeting at which the DARTIC 
deliberates on a listing decision. 

Further details on prioritization, the development of hazard identification materials and 
DARTIC consideration of the listing of chemicals under Proposition 65 are given in 
OEHHA (2004). 

References cited in Part I 

Office of Environmental Health Hazard Assessment (OEHHA). 2004. Process for 
Prioritizing Chemicals for Consideration under Proposition 65 by the “State’s Qualified 
Experts”.  California Environmental Protection Agency, OEHHA, Sacramento, CA, 
December 2004. Available online at: http://oehha.ca.gov/media/downloads/proposition-
65/document/finalpriordoc.pdf  

 

http://oehha.ca.gov/media/downloads/proposition-65/document/finalpriordoc.pdf
http://oehha.ca.gov/media/downloads/proposition-65/document/finalpriordoc.pdf
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Part II.  Chemicals Identified for Consultation with the Developmental 
and Reproductive Toxicant Identification Committee 

Benzophenone-3 

 (Oxybenzone, BP-3, 4-Methoxy-2-hydroxybenzophenone, CAS No. 131-57-7) 

 

Benzophenone-3 (BP-3) is used as a sunscreen agent because it absorbs ultraviolet 
(UV) light.  Along with other UV-absorbing agents, it has been used in industry and 
medicine for more than 30 years.  Benzophenone-3 is also used in cosmetic products 
such as lipsticks, hair sprays, hair dyes, shampoo, detergent bars and sunscreen 
lotions, and as such, millions of consumers are exposed to it on a daily basis.  It is also 
found in plastic packaging for some foods, and in paint products, toys, and furniture 
finishes, to limit degradation from UV light.  

BP-3 exposure is widespread, and it is readily absorbed when applied to the skin (Matta 
et al. 2020).  In a study of 60 individuals living in Los Angeles, BP-3 was been 
measured with a detection frequency of 95% (Biomonitoring California, 2020).  BP-3 has 
been detected in amniotic fluid (Philippat et al. 2013), breast milk (Hines et al. 2015), 
placental tissue (Philippat et al. 2019), and in the urine of 96.8% of individuals tested in 
the 2013-2014 National Health and Nutrition Examination Survey (NHANES).  In this 
NHANES survey the geometric mean (and 95th percentile) of BP-3 in urine µg/g 
(creatinine-corrected) was higher in females, i.e., 38.9 (2550), than the values reported 
for the total population, i.e., 25.2 (1190) (CDC, 2019).   

BP-3 passed the human and animal data screens, underwent a preliminary toxicological 
evaluation, and is being brought to the Developmental and Reproductive Toxicant 
Identification Committee  for consultation.  This is a brief overview of a number of 
relevant studies identified during the preliminary toxicological evaluation. 
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Human epidemiologic studies 

Numerous human studies reporting developmental and reproductive toxicity (DART)-
related effects associated with BP-3 were identified in the recent literature.  DART 
findings reported in a number of epidemiologic studies published within the last 12 years 
are summarized here.  The findings are organized by groups of outcomes. 

Placental weight 

• Positive association of maternal urine levels with placental weight (prospective 
cohort study) (Philippat et al. 2019). 

Birth weight 

• Higher birth weight associated with paternal preconception urine levels 
(prospective preconception cohort study of subfertile couples) (Messerlian et al. 
2018). 

• Higher birth weight associated with maternal urine levels in boys (nested case-
control study) (Philippat et al. 2012). 

• Higher birth weight associated with maternal urine levels (prospective cohort 
study) (Philippat et al. 2019). 

• Higher birth weight associated with maternal urine levels in boys; sex x BP-3 
interaction with decreased birth weight in girls (prospective cohort study) (Wolff et 
al. 2008). 

• No association with BP-3; association of lower birth weight in boys with maternal 
serum 4-hydroxy-benzophenone, a metabolite of BP-3, for the middle exposure 
group, compared to the low exposure group (prospective cohort study) (Krause 
et al. 2018).  

Gestation duration 

• Shorter gestational age associated with maternal urine levels (prospective cohort 
study) (Aker et al. 2019). 

• Shorter gestational age, associated with maternal urine sample at admission for 
delivery, stronger association observed in boys (approximately 1 week) (cross-
sectional study) (Tang et al. 2013). 

Congenital malformations 

• Increased odd ratios for Hirschsprung's disease with increasing exposure levels, 
p-value for trend <0.05, (case-control study), and in an in vitro study, BP-3 
influenced cell migration via SLIT2/ROBO1-miR-218-RET/PLAG1 pathway, a 
possible mechanism for Hirschsprung's disease (Huo et al. 2016). 
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Secondary sex ratio 

• No association with BP-3; excess male births associated with maternal 4-
hydroxybenzophenone, a metabolite of BP-3 (prospective cohort study) (Bae et 
al. 2016). 

Thyroid hormones 

• Lower maternal total triiodothyronine (T3), total thyroxine (T4), and T3/T4 ratio, and 
higher thyroid stimulating hormone levels observed at least once during 
pregnancy; urinary levels measured at four time points during pregnancy (nested 
case-control study) (Aker et al. 2018). 

• Lower maternal free triiodothryronine (FT3), measured in urine at two time points 
during pregnancy (prospective cohort study) (Aker et al. 2016).  

• No association with BP-3, measured in urine at two time points during 
pregnancy, and maternal serum thyroid hormone levels; in sensitivity analysis 
restricted to women with no imputed specific gravity, maternal BP-3 was 
associated with lower neonatal serum thyroid stimulating hormone (prospective 
cohort study) (Berger et al. 2018). 

• No association with BP-3, positive association between maternal serum levels of 
4-hydroxy-benzophenone, a metabolite of BP-3, and T3,T4, insulin-like growth 
factor I (IGF-I) and its binding protein IGFBP3 in mothers carrying male fetuses 
(prospective cohort study) (Krause et al. 2018). 

Neurodevelopment, prenatal exposure 

• Poorer prosocial behaviors at 10 years of age associated with higher maternal 
urinary BP-3, no association observed between concurrent phenol exposures 
and children's neurobehavioral problems at 10 years of age (prospective cohort 
study) (Guo et al. 2020). 

Childhood fat mass, prenatal exposure 

• Lower fat mass in girls (at 4 and 9 years of age), not in boys, associated with 
third trimester maternal urine levels (prospective cohort study) (Buckley et al. 
2016). 

Age at menarche and pubertal development 

• Earlier pubertal development, exposures quantified in urine collected prior to the 
onset of breast development, and during adolescence (prospective cohort study) 
(Binder et al. 2018). 

• Later pubertal development, exposure measured in children at age 6-8, followed 
for 7 years (prospective cohort study) (Wolff et al. 2015). 
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• No difference in age of menarche (cross-sectional study, NHANES) (Buttke et al. 
2012). 

• No difference in pubertal timing, measured in maternal urine during pregnancy 
and in children at age 9 (prospective cohort study) (Harley et al. 2019). 

Steroid hormone levels 

• Higher serum testosterone and estradiol and lower serum follicle-stimulating 
hormone in young men, associated with higher BP-3 within the group of mutation 
carriers of the filaggrin gene (loss of function mutation carriers), i.e. the cases, 
compared to controls (“case-control”/cross-sectional study) (Joensen et al. 2018). 

• Lower serum total testosterone in male adolescents, not in females or in children 
ages 6-11 years (cross-sectional study, NHANES) (Scinicariello and Buser 
2016). 

Animal studies  

Findings reported in whole animal studies examining possible DART effects of exposure 
to BP-3 were identified.  Findings from a number of studies published within the last 20 
years are summarized here.  

Developmental effects 

• Mouse: Three groups of pregnant dams were exposed to a dermal dose of 50 
mg/k/day BP-3 from gestation day (GD) 0 to 6.  In the first group fetal parameters 
of these ‘first pregnancies’ were assessed between GD 5-14; in the second 
group the dams delivered, were mated a second time, and fetal parameters of 
these ‘second pregnancies’ were assessed between GD 10-14; in the third group 
dams delivered litters from the first and second pregnancies, and pup and early 
postnatal body weights were assessed.  BP-3 treatment resulted in reduced fetal 
weight at GD 14, feto-placenta index, and weight at postnatal day (PND) 4 and 
then from PND10 onwards in males, and in females at PND1, PND10, and 
PND13 but recovered normal weight from PND16 onwards in the first pregnancy, 
and decreased placental weights in the second pregnancy.  In addition, first and 
second progenies of exposed mothers showed a higher percentage of females 
(female sex ratio) (Santamaria et al. 2020). 

• Zebrafish: Decreased number of hatched embryos in a concentration dependent 
manner, caused tail deformation, impaired development of jaw, and lack of swim 
bladder inflation in a concentration dependent manner (Balázs et al. 2016). 
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Neurodevelopmental effects 

• Zebrafish: BP-3 exposure at 10 μg/L during 6-24 hours post fertilization (hpf), 
resulted in increased spontaneous movement at 21 and 24 hpf; decreased touch 
response at 27 hpf; heightened hyperactivity in locomotor response at 5 days 
post fertilization (dpf); decreased shoaling behavior at 11 dpf and decreased 
mirror attacks at 12 dpf.  Additional effects included decreased axonal growth at 
27 hpf; decreased cell proliferation and increased cell apoptosis in the head 
region of larval zebrafish immediately after BP-3 exposure at 24 hpf; and 
increased expression of retinoid X receptor gene rxrgb at 5 dpf.  Rxrgb 
knockdown through morpholino injection largely blocked most of the BP-3-
induced neurodevelopmental effects, (e.g., on axonal growth, cell proliferation 
and cell apoptosis) (Tao et al. 2020). 

Mammary gland effects  

• Mouse: In female offspring of dams exposed during pregnancy day zero until 
weaning, effects on the mammary gland included permanent changes to ductal 
density, an intermediate phenotype for expression of the progesterone receptor, 
a monotonic, dose-dependent increase in cell proliferation, and an intermediate 
phenotype for Esr1 expression (LaPlante et al. 2018). 

• Mouse: Exposure in utero and during lactation reduced mammary cell 
proliferation, decreased the number of cells expressing estrogen receptor α, and 
altered mammary gland morphology in adulthood in females.  In males, exposure 
reduced the size and growth of the mammary gland prior to and during puberty 
(Matouskova et al. 2019). 

Uterine weight effect 

• Rat: Acute (4-day) exposure slightly increased uterine weight in sexually 
immature females (Schlumpf et al. 2001). 

Endocrine effects 

• Zebrafish: Embryo exposure, decreases in whole-body T4 and T3 at day 6 post 
fertilization; up-regulation of dio1 and ugt1ab genes (Lee et al. 2018). 

• Zebrafish: Down-regulation of the hsd3b, hsd17b3, hsd11b2 and cyp11b2 
transcripts in the testes, suggesting antiandrogenic activity in adult males and in 
eleuthero (free-floating) embryos, down-regulation of esr1, ar and cyp19b in the 
brain of adult males (Blüthgen et al. 2012). 

• Japanese medaka: Plasma testosterone concentrations significantly increased in 
males; 17β-estradiol to 17β-estradiol/testosterone ratio showed significant 
decreases in both males and females; down-regulation of gonadal steroidogenic 
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genes such as star, cyp11a, cyp17, hsd3b, hsd17b3, and cyp19a; daily average 
egg reproduction per female significantly reduced.  Hatchability of F1 eggs was 
not affected by continuous exposure; juvenile fish showed a concentration-
dependent decrease in the condition factor (K = 100 [total weight (g)]/total length 
(cm3)]) but mortality was not affected in this two generation study (Kim et al. 
2014). 

• Japanese medaka: Exposure resulted in a lower number of eggs produced after 
7 days, but returned to control values after 21 days; a lower percentage of 
fertilized eggs hatched, and a temporal effect of diminished egg viability 13-15 
days after eggs were collected (Coronado et al. 2008).  

• Chironomus riparius (Diptera) (harlequin fly, a species of non-biting midge): 
Decreased egg hatching, strong dose-response relationship observed for fertility 
with none of the egg ropes hatching at 8 mg BP-3/kg, emergence and 
development time were impaired in FI generation (whose parents were exposed) 
even when maintained in control/clean conditions (Campos et al. 2019). 

Other DART effects 

• Zebrafish: In the Fish Development Test7, newly fertilized eggs were exposed 
until the completion of sexual differentiation at about 60 days post hatch, 
resulting in a monotone dose-dependent skewing of phenotypic sex ratio toward 
fewer males and more females; gonad maturation was also affected in both 
males and females (Kinnberg et al. 2015). 

• Zebrafish: 12-day exposure of adult males resulted in a slight yet significant 
increase in the vitellogenin concentration at the middle exposure dose (Kinnberg 
et al. 2015). 

• Rainbow trout: Significant induction of vitellogenin (Coronado et al. 2008). 

Mechanistic, in vitro and other relevant data 

• Human: In breast epithelial cell lines low concentrations of BP-3 resulted in 
increased formation of ERα-dependent R-loops (RNA:DNA triplex structures) and 
DNA damage (Majhi et al. 2020). 

• Human: Increased cell proliferation and increased secretion of the estrogen-
regulated protein pS2 in MCF-7cells, a breast cancer cell line (Schlumpf et al. 
2001). 

• Human: Adverse effect on the viability of neuroblastoma SH-SY5Y cells at 10-4M, 
and enhanced activity of caspase-3 activity at much lower concentrations (from 
10-8 to 10-7M), indicating apoptosis.  The authors stated that these effects were 
seen “at concentrations that may be reached in vivo” (Broniowska et al. 2016). 

                                            
7 https://www.oecd-ilibrary.org/environment/test-no-234-fish-sexual-development-test_9789264122369-en 



Chemicals for  15 Office of Environmental Health 
DARTIC Consultation:  Hazard Assessment 
Benzophenone-3  October 2020 

• Rat: In whole ovary culture, BP-3 decreased the number of total oocytes, the 
number of nests per ovary, the population of early primary follicles, and the 
number of p27-positive oocytes; induced overexpression of Foxl2 mRNA levels 
through ESR2; and increased Fst mRNA levels independently from ESR2 or 
Foxl2 (Santamaría et al. 2019). 

• Rat: In a pituitary (GH3) cell line, observed down-regulation of Tshβ, Trhr, and 
Trβ genes and in a thyroid follicular cell (FRTL-5) line, observed up-regulation of 
Nis and Tg genes while down-regulating the Tpo gene (Lee et al. 2018). 

• Rat: Exposure in utero and via lactation, and continuing up to 7 weeks of age, 
induced the mitochondrial apoptosis pathway in the 7-week old rat frontal cortex, 
increased caspase-9 and reduced levels of anti-apoptotic proteins in the 
hippocampus, reduced levels of ERβ in the nuclear fraction and GPR30 in the 
membrane fraction in both brain regions, and significantly increased AhR in the 
cytosol of the frontal cortex (Krzyżanowska et al. 2018). 

• Mouse: Primary neocortical and hippocampal neuronal cell cultures prepared 
from mouse embryos on GD 15-17 were exposed to BP-3 for 6 or 24 hours.  
Treatment affected mRNA and protein expression levels of Erα, Erβ, Gpr30, and 
Pparγ, in parallel with BP-3-induced apoptosis and neurotoxicity, suggesting that 
“BP-3-evoked apoptosis of neuronal cells is mediated via attenuation of 
Erα/Pparγ and stimulation of Erβ/Gpr30 signaling” (Wnuk et al. 2018a). 

• Mouse: Neocortical cells cultured from isolated neocortical brain tissue obtained 
from embryos of pregnant mice treated on GD 7-16 with 50 mg/kg BP-3 showed 
“severe neuronal apoptosis accompanied by impaired ESR1/ESR2 expression, 
enhanced GPER1 expression, global DNA hypomethylation and altered 
methylation statuses of apoptosis-related and ERs genes” (Wnuk et al. 2018b). 

• Mouse: Neocortical cells cultured from isolated brain tissue obtained from 
embryos of pregnant mice treated on GD 7-16, “using environmentally relevant 
doses” (e.g., 50 mg/kg) showed: 

- Impaired autophagy in terms of BECLIN-1, MAP1LC3B, autophagosomes,    
and autophagy-related factors;  

- Disrupted levels of retinoid X receptor (RXR) and peroxisome proliferator- 
activated receptor gamma (PPARγ);  

- Altered epigenetic status (i.e., attenuated HDAC and sirtuin activities);  
- Inhibited post-translational modifications in terms of global sumoylation; 
- Dysregulated expression of neurogenesis- and neurotransmitter-related 

genes, as well as miRNAs involved in pathologies of the nervous system 
(Wnuk et al. 2019). 

• Mouse: Ovariectormized females were treated for 4 days, after which the 
mammary tissue was examined histologically.  Acute exposure to BP-3 increased 
the formation of ERα-dependent R-loops (RNA:DNA triplex structures) and the 
DNA damage marker γ-H2AX (Majhi et al. 2020). 
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• Bioluminescence-based yeast (BLYES, BLYAS, and BLYR): BP-3 caused 
cytotoxicity and was estrogenic and anti-androgenic, estrogen assay showed 
non-monotonic concentration-response curve (Balázs et al. 2016). 

• Zebrafish: In embryos treated 2 hours post fertilization, BP-3 prolonged hatching 
time and reduced hatching rate of embryos and some hatched larvae developed 
yolk sac edema and curved spines; BP-3 upregulated gene expression of 
CYP1A, CYP1B, CYP3A65, ERα, ERβ1, GPER, VTG1, BRCA2, CYP19A, 
DMRT1, GSTA, GSTM and GSTP, and downregulated gene expression of 11β-
HSD, and RNA-seq data showed that BP-3 affects steroid hormone biosynthesis 
(estradiol-17 β) (Meng et al. 2020). 
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Bisphenol S (BPS) 

(4,4'-Sulfonyldiphenol, CAS No. 80-09-1) 

 

BPS is an analog of bisphenol A (BPA), and has become increasingly commonly used 
as a building block for polycarbonates, a reactant in polymer reactions, and a corrosion 
inhibitor in fast-drying epoxy glues.  BPS is also used as a developer in thermal paper 
such as that used for cash register receipts.  Human biomonitoring studies indicate that 
exposure to BPS is widespread and likely increasing.  For example:  

• A 2012 study reported that 81% of urine samples from men and women from the 
general population in the US and seven Asian countries contained BPS (Liao et 
al. 2012).   

• BPS was detected in 89.4% of randomly selected urine samples from the 2013-
2014 National Health and Nutrition Examination Survey (Lehmler et al. 2018).   

• In Puerto Rico in 2010-2016, pregnant women’s urine concentrations of BPS 
showed an increasing temporal trend while BPA concentrations decreased 
(Ashrap et al. 2018).  

BPS passed the human and animal data screens, underwent a preliminary toxicological 
evaluation, and is being brought to the Developmental and Reproductive Toxicant 
Identification Committee for consultation.  This is a brief overview of the relevant studies 
published from 2018 to August 2020 that were identified during the preliminary 
toxicological evaluation. 

Human epidemiologic studies 

Numerous human studies reporting developmental and reproductive toxicity (DART)-
related effects associated with BPS were identified in the recent literature.  DART 
findings reported in epidemiologic studies published between 2018 and August 2020 
are summarized here.  The findings are organized by groups of outcomes.   

Indicators of fetal growth  

• Lower birth weight (prospective cohort studies) (Hu et al. 2019) (Goodrich et al. 
2019).  
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• Lower birth weight of female infants (prospective cohort study) (Ferguson et al. 
2018). 

• Birth weight and head circumference not associated with preconception or 
prenatal exposure of mothers or fathers seeking fertility evaluation (prospective 
cohort study) (Mustieles et al. 2018). 

• No associations with birth size (cohort study) (J Liang et al. 2020). 
• No associations with ultrasound parameters of fetal growth in models adjusted 

for BPA and bisphenol F (BPF) (cross-sectional study) (Zhou et al. 2020). 
• Lower ponderal index (prospective cohort study) (Hu et al. 2019). 
• Shorter birth length (prospective cohort study) (Hu et al. 2019).  
• No associations with birth weight or length (cross-sectional study) (Wan et al. 

2018). 

Gestation duration 

• Shorter gestation length in women with negative life event stress scores 
(prospective cohort study) (Aker et al. 2020). 

• Preterm birth (nested case-control study) (Aung et al. 2019). 
• Preterm birth associated with maternal preconception exposure (prospective 

cohort study) (Mustieles et al. 2020). 
• Increased gestational age and odds of late term birth in girls (cross-sectional 

study) (Wan et al. 2018).  
• No significant association with gestational age (longitudinal cohort study) (Huang 

et al. 2019). 

Other DART effects 

• Lower psychomotor development at 2 years (prospective cohort study) (Jiang et 
al. 2020). 

• Lower corticotropin releasing hormone in pregnant women (cross-sectional study 
with repeated measures) (Aker et al. 2019).  

• Higher plasma fasting glucose in pregnant women at 24-28 weeks gestation, 
particularly for women carrying female fetuses (prospective cohort study) (Zhang 
et al. 2019). 

• Decrease in maternal plasma free thyroxine and marginal increase in thyroid 
stimulating hormone (cross-sectional study with repeated measures) (Aker et al. 
2018). 

• No associations with serum levels of maternal thyroid hormones in early 
pregnancy (cross-sectional study) (Derakhshan et al. 2019). 

• No consistent association with urinary markers of oxidative stress in pregnant 
women (cross-sectional study with repeated measures) (Ferguson et al. 2019). 
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• In women with history of recurrent unexplained spontaneous abortion, marginal 
association with increased serum interleukin-10, suggesting association with 
oxidative stress and immune imbalance (cross-sectional study) (F Liang et al. 
2020). 

• Lower semen volume among men attending a fertility center, and lower sperm 
concentration, count, and motility among those with body mass index ≥ 25 kg/m2 
(cross-sectional study) (Ghayda et al. 2019). 

Animal studies  

Findings reported in whole animal studies examining possible DART effects of exposure 
to BPS published between 2018 and August 2020 are summarized here.   

Effects on placenta  

• Mouse: A number of effects on the placenta-brain axis were observed, such as a 
decrease in the area occupied by spongiotrophoblast relative to trophoblast giant 
cells, reduced placental serotonin (5-HT) concentrations, reduced 5-HT giant cell 
immunoreactivity, increased concentrations of dopamine and 
5-hydroxyindoleacetic acid (5-HIAA; main metabolite of serotonin), increased 
giant cell dopamine immunoreactivity.  These effects on the placenta-brain axis 
were almost identical to those reported for BPA (Mao et al. 2020). 

• Sheep: An effect on placental endocrine function, specifically, dysregulation of 
the fusogenic trophoblast signaling pathway, was observed (Gingrich et al. 
2018). 

Developmental effects on hormones  

Developmental effects are associated with in utero exposures unless otherwise 
specified. 

• Rat: Altered hormone concentrations and antioxidant enzymes (Ullah et al. 
2019b). 

• Rat: Sex-differentiated effects on hormones after exposure at higher dose (50 
µg/kg/day) during pregnancy and lactation (da Silva et al. 2019). 

• Mouse: F3 males (F1 exposed in utero): Dysregulated serum levels of estradiol-
17β and testosterone, as well as expression of steroidogenic enzymes in F3 
adult testis (Shi et al. 2019c). 

• Mouse: F3 females (F1 exposed in utero): Serum estradiol-17β elevated at 
six months; dysregulated expression of steroidogenic enzymes observed in ovary 
at three or six months (Shi et al. 2019b).  
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• Zebrafish: Significant increases in T3 and/or T4, transcriptional changes of genes 
related to thyroid development, thyroid hormone transport, and metabolism in 
larvae; delayed hatching (Lee et al. 2019).  

• Zebrafish: Decreased thyroxine (T4) and increased 3,5,3'-triiodothyronine (T3) in 
eggs (F1) (Wei et al. 2018). 

Developmental effects on reproductive tissues or function 

Developmental effects are associated with in utero exposures unless otherwise 
specified 

• Rat: Changes in male reproductive tissues (Ullah et al. 2019b). 
• Mouse: Accelerated mammary gland development and adverse mammary gland 

morphology, adenocarcinomas (Tucker et al. 2018). 
• Mouse: Modest changes in the mammary gland at puberty following low doses 

(2, 200, or 2000 µg/kg/day) of BPS administered perinatally (Kolla and 
Vandenberg 2019). 

• Mouse: Age and dose-specific effects on mammary gland development with 
perinatal exposure (Kolla et al. 2018). 

• Mouse: Early puberty onset, abnormal estrous cyclicity, mating difficulties, 
fertility, disruption of early folliculogenesis (Shi et al. 2019a). 

• Mouse: F3 females (F1 exposed in utero): Earlier puberty, abnormal estrous 
cyclicity, mating difficulties starting at six months, reduced pregnancy rates, 
parturition issues, nursing issues at six months that worsened at nine months 
(Shi et al. 2019b).  

• Mouse: F3 males (F1 exposed in utero): Decreased sperm counts and/or motility 
and disrupted germ cell development (Shi et al. 2019c). 

Other developmental effects 

Developmental effects are associated with in utero exposures unless otherwise 
specified 

• Rat: Sex-differentiated effects on behavior after exposure at higher dose (50 
µg/kg/day) during pregnancy and lactation (da Silva et al. 2019). 

• Rat: Increased preference for fat-enriched diet, which may increase risk of 
obesity (da Silva et al. 2019). 

• Mouse: Increased body weight and weights of liver and epididymal white adipose 
tissue (epiWAT), serum alanine aminotransferase activity, and liver triglyceride 
and cholesterol levels.  Increased expression of genes involved in inflammatory 
pathways in liver and epiWAT.  Changes in levels of metabolites associated with 
lipid and glucose metabolism in liver and epiWAT.  Relative expression of genes 
involved in lipid and glucose metabolism were significantly changed in liver and 
epiWAT in males (Meng et al. 2019). 
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• Zebrafish: Downregulated expression of six neurodevelopment genes (alpha1-
tubulin, elavl3, gap43, mbp, syn2a and gfap) and increased oxidative stress; 
these may be mechanisms by which BPS affects locomotor behavior and alters 
retinal structure in zebrafish (Gu et al. 2019).  

• Zebrafish: Reduced yolk lipid consumption (Wang et al. 2019).  

Effects on hormones, postnatal exposure 

• Rat: Reduced testosterone production (Ullah et al. 2018a).  
• Rat: Decreased plasma testosterone, luteinizing hormone and follicle stimulating 

hormone concentrations; increased estradiol levels (Ullah et al. 2018b).  
• Rat: Highest doses (50 mg/kg) resulted in increased plasma concentrations of 

testosterone and estradiol, while plasma progesterone, luteinizing hormone, and 
follicle stimulating hormone concentrations were reduced (Ahsan et al. 2018).   

• Mouse: BPS administered during perinatal period did not appear to sensitize the 
female to an estrogenic challenge administered during the peripubertal period 
(Kolla and Vandenberg 2019).  

Effects on reproductive tissues and function, postnatal exposure 

• Rat: Changes to gonadosomatic index and relative reproductive organ weights, 
increased oxidative stress in testis (Ullah et al. 2018b). 

• Rat: Adverse effects on testes and spermatogenesis.  Reduced antioxidant 
enzyme activities and protein content, increased reactive oxygen species in male 
reproductive tissues (Ullah et al. 2018a). 

• Rat: No difference in ovarian weight or ovulation (Demacopulo and Kreimann 
2019). 

• Rat: Reduced gonadosomatic index and absolute and relative uterus weight.  
Highest dose (50 mg/kg) resulted in delayed puberty onset and altered estrous 
cyclicity (Ahsan et al. 2018).  

• Rat: Structural impairments in testes and altered sexual differentiation of a 
dimorphic population of dopaminergic neurons in the anteroventral periventricular 
nucleus region of the hypothalamus in males (John et al. 2019).  

• Daphnids: Inhibition of reproduction and growth (Liu et al. 2019). 

Effects on germ cells, postnatal exposure  

• Rat: DNA damage in sperm, while motility was not affected (Ullah et al. 2019a). 
• Rat: Decreased sperm motility and production (Ullah et al. 2018b). 
• Rat: Increased number of cystic follicles in the ovaries and increased number of 

atretic follicles (Ahsan et al. 2018).  
• Mouse: Effects on oocyte quality “even at concentrations…orders of magnitude 

below those measured in humans” (Prokesova et al. 2019). 
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• Mouse: Decreased number and increased mean volume of antral follicles.  In 
vivo fertilization rate decreased after treatment with 10 ng/g/day and increased 
after treatment with 100 ng/g/day (Nevoral et al. 2018). 

Other effects 

• Rat: Increased proliferating cell nuclear antigen expression, which correlates with 
accumulation of ezrin, in the endometrium (Demacopulo and Kreimann 2019). 

Mechanistic, in vitro, and other relevant data  

BPS is a structural analog to BPA, thus its physiological effects may be similar 
(Rochester and Bolden 2015).  BPA is a known endocrine disruptor and is listed under 
Proposition 65 as causing reproductive toxicity (female reproductive endpoint)8.   

• Human: BPS increased production of intracellular reactive oxygen species, 
decreased antioxidant capacity, and increased damage to biomacromolecules, 
the main targets of oxidative stress, in KGN cells (ovarian granulosa-like tumor 
cell line) (Huang et al. 2020). 

• Human: BPS showed agonistic activity for human estrogen receptors α and β, 
and no activity (agonistic or antagonistic) for the following: androgen receptor, 
glucocorticoid receptor, pregnane X receptor, constitutive androstane receptor 
(Kojima et al. 2019). 

• Human: BPS has estrogen receptor α agonistic activity, and no estrogen receptor 
β agonistic activity (Li et al. 2018). 

• Cattle: Cumulus-oocyte complexes that were matured in vitro had spindle 
abnormalities and chromosome misalignment after exposure to BPS (Campen et 
al. 2018a). 

• Cattle: Granulosa cell estradiol production was stimulated when cells were 
exposed to 100 μM BPS under basal conditions (Campen et al. 2018b). 

• Pig: BPS inhibited estradiol production, cell proliferation, and nonenzymatic 
scavenging activity, and stimulated cell viability, superoxide and nitric oxide 
production in cultured granulosa cells (Berni et al. 2019). 

• Rat: In an in vitro BPS exposure study in cultured testicular tissues, antioxidant 
enzyme activities and oxidative stress markers were induced, whereas 
testosterone production was reduced (Ullah et al. 2018a). 

• Mouse: In the mouse GC-2 spermatocyte cell line BPS induced apoptosis and 
caused cellular damage, influenced GC-2 cell steroid receptor and 
steroidogenesis-related gene expression, and increased global DNA methylation.  

                                            
8 https://oehha.ca.gov/media/downloads/proposition-65//p65list010320.pdf 
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BPS also increased cell viability after 24-hour exposures, but this effect 
diminished after longer exposure (Sidorkiewicz et al. 2018).  

• Mouse: Cell-matrix and cell-cell adhesion, and signal transduction pathways 
were altered in embryonic stem cells that were treated with BPS during 
differentiation into neuroectoderm/neural progenitor cells (Yin et al. 2019).  

• Zebrafish: In a global transcriptome sequencing study, BPS treatment of 
embryos altered expression levels of 246 genes.  Functional enrichment analysis 
indicated that metabolism was the main pathway for disruption (Qiu et al. 2019). 
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Diazinon 

(CAS No. 333-41-5) 

 

Diazinon is an organophosphate insecticide.  Sales of diazinon for residential use have 
been banned by the US Environmental Protection Agency since January 1, 2005; 
however, there is still widespread agricultural use in California and elsewhere in the US.  
Diazinon is registered in California to control foliage and soil insects, and pests in a 
range of fruits (e.g., pears, peaches, watermelon), nuts (e.g., almonds) and vegetables 
(e.g., onions, lettuce, tomatoes).  According to the California Department of Pesticide 
Regulation (DPR), 72,621 pounds of diazinon were used in California in 2017.   

Diazinon passed the human and animal data screens, underwent a preliminary 
toxicological evaluation, and is being brought to the Developmental and Reproductive 
Toxicant Identification Committee for consultation.  This is a brief overview of some 
relevant studies identified during the preliminary toxicological evaluation.  

Human epidemiologic studies 

A limited number of studies reporting developmental and reproductive toxicity (DART)-
related effects associated with diazinon were identified in the recent literature.  DART 
findings reported in these studies are summarized here.  The findings are organized by 
groups of outcomes.   

Birth weight 

• Lower birth weight (birth cohort study) (Jaacks et al. 2019). 
• Cord plasma levels of diazinon were not associated with birth weight, length, or 

head circumference, while levels of diazinon and chlorpyrifos combined were 
associated with decreased birth weight and length (prospective cohort study) 
(Whyatt et al. 2004). 

• Early pregnancy detection of urinary 2-isopropyl-4-methyl-6-hydroxypyrimidine 
(IMPy), a biomarker of diazinon exposure, was associated with increased risk of 
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low birth weight, but not stunting at one or two years of age (birth cohort study) 
(Jaacks et al. 2019).  

Association with autism spectrum disorders 

• Application of diazinon within 2000 meters of mothers’ residences during 
pregnancy was associated with increased risk of autism spectrum disorder (ASD) 
and ASD with intellectual disability (case-control study) (von Ehrenstein et al. 
2019). 

• In a single-pesticide model, agricultural diazinon use within one kilometer of 
maternal residence during pregnancy was associated with a lower verbal 
comprehension intelligence quotient (IQ) score at 7 years of age.  Diazinon use 
was also non-significantly associated with lower scores on other IQ scales (e.g., 
full scale IQ, perceptual reasoning) (prospective cohort study) (Gunier et al. 
2017). 

Female reproductive effects 

• Levels in follicular fluid correlated with lower number of oocytes retrieved in 
women of couples undergoing in vitro fertility intervention for male factor 
infertility; significant association of levels in follicular fluid with lower implantation 
rate (cross sectional observation study) (Al-Hussaini et al. 2018).  

• Women with urinary IMPy in the fourth quartile, compared to women in the first 
quartile, were at increased risk of endometriosis, suggesting that exposure to 
diazinon may be associated with endometriosis (prospective cohort study) (Li et 
al. 2020). 

• Female spouses of pesticide applicators who used diazinon were at increased 
risk of ovarian cancer (prospective cohort study) (Lerro et al. 2015).  

Male reproductive effects 

• Urinary IMPy was associated with highly elevated risk of having low sperm 
concentration, percentage sperm with normal morphology, and percentage motile 
sperm (case-control study) (Swan et al. 2003). 

• Among male pesticide applicators, diazinon exposure in the top tertiles was 
associated with non-significantly elevated risk of aggressive prostate cancer 
(prospective cohort study) (Jones et al. 2015). 



 

Chemical for 35 Office of Environmental Health 
DARTIC Consultation:  Hazard Assessment 
Diazinon  October 2020 

Animal studies  

Findings reported in whole animal studies examining possible DART effects of exposure 
to diazinon are summarized here.  . 

Maternal and developmental effects 

• Rat: In a two generation guideline study with dietary exposure, lower gestational 
and lactational body weight gains; decreased live litter size for high dose (500 
ppm) F2a litters, and decreased pup survival and pup body weights during 
lactation for the F1a mid (100 ppm) and high dose (500 ppm) groups and the F2a 
high dose group were observed (DPR 1999; US EPA 1997)  

• Rat: In a one generation dietary study conducted according to FIFRA (Federal 
Insecticide Fungicide & Rodenticide Act) guidelines, observations included 
decreased gestational and lactational body weights and/or body weight gains in 
dams in the high dose group; decreased F1a and F1b live litter sizes; increased 
incidences of stillbirths in low dose F1b and high dose F1a and F1b litters; and 
decreased pup survival and pup body weights during lactation in mid and high 
dose F1a and F1b litters (DPR 1999; US EPA 1997) 

• Rat: In a study conducted according to FIFRA guidelines, maternal exposure on 
gestational days (GD) 6-15 resulted in slight decreases in maternal weight gain 
and food consumption and structural changes seen in offspring at the high dose 
(DPR 1999) 

• Rat: Maternal exposure on GD 6-15 resulted in fetal toxicity and increased 
number of litters with skeletal and visceral anomalies in the high dose group (7.6 
mg/kg-day); cholinergic symptoms, including diarrhea, tremors, weakness, 
salivation, and decreased activity were observed in high dose dams; milder 
cholinergic symptoms in dams occurred in the 3.8 mg/kg-day dose group 
(Elmazoudy et al. 2011). 

• Mouse: Maternal exposure throughout gestation resulted in significant delays in 
sexual maturity (descent of testes and vaginal opening) in offspring (Spyker and 
Avery 1977). 

• Rabbit: In a standard guideline teratology study, no adverse effects were seen in 
offspring of dams exposed during gestation to doses of up to 100 mg/kg-day 
(DPR 1999). 

Neurodevelopmental effects 

• Mouse: Maternal exposure throughout gestation impaired offspring endurance 
and coordination on rod cling and inclined plane tests of neuromuscular function 
in offspring of the low and high dose groups, delayed the appearance of the 



 

Chemical for 36 Office of Environmental Health 
DARTIC Consultation:  Hazard Assessment 
Diazinon  October 2020 

contact placing reflex in offspring of the low dose group, and resulted in 
neuropathologic changes in the forebrain of high dose group offspring (Spyker 
and Avery 1977). 

• Rat: Maternal exposure prior to conception through gestation affected offspring 
by impairing novel-object recognition (test of cognitive function) significantly 
decreasing preference for the novel vs. familiar object; increasing percent time 
spent in the open arms of the elevated plus maze (index of risk-taking behavior), 
and increasing hyperactivity early in the Figure-8 apparatus test session during 
adolescence, but not adulthood (Hawkey et al. 2020). 

• Rat: Pups were exposed to diazinon on postnatal days (PND) 1-4 and examined 
with cognitive battery tests.  Findings in adolescence were significant 
hyperactivity in initial but not later trials in the T-maze, and no effects on 
locomotor activity in the Figure-8 test.  Findings in adulthood were reduced pre-
pulse inhibition (an index of sensorimotor gating) (only in males), impaired spatial 
learning in the radial-arm maze in the low dose group, and increased sensitivity 
to memory-impairing effects of the anticholinergic drug scopolamine in the low 
dose group (Timofeeva et al. 2008). 

• Rat: Subcutaneous administration on PND 1-4 impaired neuritic outgrowth in the 
forebrain and brainstem and decreased choline acetyltransferase activity (a 
cholinergic neuronal marker) on PND 5; no effect on hemicholinium-3 binding to 
the presynaptic choline transporter (index of cholinergic neuronal activity) and no 
down-regulation of the m2-muscarinic acetylcholine receptor was observed 
(Slotkin et al. 2006). 

• Rat: Animals were exposed on PND 1-4, and levels of serotonin (5HT) receptors 
and 5HT transporters were assessed in the cerebral cortical region and 
brainstem at 30, 60 and 100 days of age.  A lasting deficit in 5HT1A receptors 
was observed in both brain regions in males, with greater effects seen at lower 
doses, and a significant increase in 5HT transporters was observed in both brain 
regions in females, with greater effects seen at lower doses (Slotkin et al. 2008). 

• Rat: Maternal exposure (to doses that did not inhibit acetylcholinesterase 
[AChE]) prior to conception through PND 14 affected biochemical parameters in 
the brain of offspring (assessed from adolescence through adulthood).  
Specifically, deficits in presynaptic acetylcholine (ACh) activity and decreases in 
nicotinic acetylcholine receptors (AChRs) and serotonin receptors were observed 
to a greater extent in cerebrocortical regions and the hippocampus compared to 
the striatum, midbrain or brainstem; females were more sensitive than males 
(Slotkin et al. 2019). 

• Rat: Exposure (to doses that did not inhibit AChE) on PND 1-4 altered emotional 
behavior in young adults (PND 52), with decreased time spent in the open arms 
of the elevated plus maze (males only), shorter latencies to begin eating novel 
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food (males only), and reduced preference for chocolate milk in the anhedonia 
test (both sexes) (Roegge et al. 2008). 

• Zebrafish: Exposure to embryos for 24 h had no effect on embryonic 
spontaneous movement or heartbeat, or larval responses to touch or a light-dark 
transition (Velki et al. 2017a).  

• Zebrafish: Exposure to embryos for varying lengths of time using different 
exposure and recovery scenarios resulted in alterations in AChE, 
caboxylesterase (CES), ethoxyresorufin-O-deethylase (EROD), glutathione-S-
transferase (GST), catalase (CAT) and glutathione peroxidase (GPx), and in 
gene expression levels of acetylcholinesterase (ache), carboxylesterase (ces2), 
cytochrome P450 (cyp1a), glutathione-S-transferase (gstp1), catalase (cat), 
glutathione peroxidase (gpx1a) and glutathione reductase (gsr) (Velki et al. 
2017b). 

Male and female reproductive effects 

• Mouse: Maternal exposure throughout gestation resulted in significant delays in 
sexual maturity (descent of testes decent and vaginal opening) in offspring [also 
mentioned above under Maternal and Developmental Effects] (Spyker and Avery 
1977).  

• Rat: In a one-generation dietary study conducted according to FIFRA guidelines, 
fecundity (number of live deliveries per number of cohoused male and female 
pairs) was decreased at the 1000 ppm treatment level for the F1a mating trial, 
and at the 10 ppm, 100 ppm and 1000 ppm treatment levels for the F1b mating 
trial; and absolute and/or relative ovary weights were decreased in the 100 ppm 
and 1000 ppm dams (DPR 1999). 

• Rat: Administration of a single intraperitoneal dose of 20mg/kg to males 
significantly decreased sperm motility, progressive motility, and beat cross 
frequency (BCF) and increased the amplitude of lateral head displacement 
(ALH).  Administration of 40 mg/L in drinking water for 90 days to males 
significantly increased sperm velocity average path, curvilinear velocity, and 
ALH, and decreased progressive motility and BCF (Toman et al. 2016). 

• Rat: A single exposure to adult females decreased the number of proliferating 
ovarian follicles based on proliferating cell nuclear antigen staining, in secondary 
and Graffian ovarian follicles (Sargazi et al. 2019). 

• Rat: Maternal exposure on GD 6-15 decreased net gravid uterine weight 
decreased in the 7.6 mg/kg-d dose group (Elmazoudy et al. 2011). 
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Mechanistic, in vitro, and other relevant data 

• Rat: Primary cortical astrocyte cultures were prepared from GD 21 fetuses, 
cultured for 12 days and then exposed to diazinon or its oxon for 24 h, after 
which in some experiments freshly isolated GD 21 fetal hippocampal neurons 
were introduced in a “sandwich” co-culture system.  Exposure to diazinon or its 
oxon increased production of reactive oxygen species (ROS) and decreased 
fibronectin levels in astrocyte cultures at concentrations devoid of any 
cytotoxicity.  In the co-culture system, the ability of exposed astrocytes (exposed 
to either diazinon or its oxon) to foster neurite outgrowth in hippocampal neurons 
was impaired (Pizzurro et al. 2014a). 

• Rat: Primary hippocampal neuronal cells were prepared from GD 21 fetuses, 
cultured in astrocyte-conditioned medium for 24 h, and then exposed to diazinon 
or its oxon for 24 h.  Exposure to diaznon or its oxon increased production of 
reactive oxygen species in cultured neurons, and decreased neurite outgrowth 
(measured as a decrease in longest neurite length) at concentrations devoid of 
any cytotoxicity.  Exposure to the oxon also decreased minor neurite length 
(Pizzurro et al. 2014b). 

• Rat: Exposure of male pups on PND 1-4 (at either a dose that did not inhibit 
cholinesterase or a dose that resulted in <20% inhibition) altered expression of 
genes encoding fibroblastic growth factors (Fgf) and fibroblastic growth factor 
receptors (Fgfr) in the brainstem and forebrain on PND 5 by microarray analysis.  
The fibroblast growth factor superfamily of neurotrophic factors plays a critical 
role in neuronal cell development, brain assembly and recovery from neuronal 
injury.  Specifically, there was decreased expression of Fgf20 in the forebrain 
and of Fgf2 and Fgf22 in the brain stem, and increased expression of Fgfr4 in the 
brain stem (Slotkin et al. 2007b). 

• Rat: Neonatal rats were exposed on PND 1-4 at doses that did not inhibit AChE, 
and gene expression profiles in the brainstem and forebrain were examined on 
PND 5 using microarray technology.  Exposure resulted in alterations in gene 
expression in pathways involved in general neural cell development, cell 
signaling, cytotoxicity, and neurotransmitter systems (Slotkin and Seidler 2007).  

• Rat: In undifferentiated and differentiating neuronotypic adrenal 
pheochromocytoma (PC12) cells, diazinon inhibited DNA synthesis.  In studies 
with differentiating cells, diazinon increased lipid peroxidation and increased the 
tyrosine hydroxylase to choline acetyltransferase activity ratio (Slotkin et al. 
2007a).  

• Rat: In gonadotropin-primed immature females, diazinon decreased ovarian 
steroidogenic acute regulatory protein (Star) mRNA levels and the diameter of 
corpus lutea (Siavashpour et al. 2018). 
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• Rat: In differentiating PC12 cells, diazinon reduced expression in many of the 21 
Parkinson’s Disease (PD)-related genes assessed.  Analysis of microarray data 
generated in the study of Slotkin and Seidler (2007) described above (i.e., gene 
expression profiles from the brainstem and forebrain of rats exposed on PND 1-
4) found significant changes in nine of the 21 PD-related genes assessed 
(Slotkin and Seidler 2011).  
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Diethyl phthalate (DEP) 

(Diethyl benzene-1,2-dicarboxylate, CAS No. 84-66-2) 

 

Diethyl phthalate (DEP) is a plasticizer used in resins and elastomers, a solvent used in 
the manufacture of some plastics, mosquito repellents and personal care and consumer 
products, particularly those containing fragrances, and an excipient used in 
pharmaceuticals.  DEP is also a component of tobacco smoke (Zhao et al. 2017).   

Human biomonitoring studies indicate that exposure to DEP is widespread.  For 
example, Table 3 below summarizes data on urinary concentrations of the DEP 
metabolite monoethyl phthalate (MEP) (geometric mean and 95% confidence interval 
[CI]) measured in studies conducted by the Biomonitoring California Program between 
2005 and 2013 (Biomonitoring California 2020).  

DEP passed the human and animal data screens, underwent a preliminary toxicological 
evaluation, and is being brought to the Developmental and Reproductive Toxicant 
Identification Committee for consultation.  This is a brief overview of the relevant studies 
that were identified during the preliminary toxicological evaluation. 
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Table 3.  Urinary concentration (ng/ml) of MEP, a metabolite and biomarker of 
exposure to DEP, in studies in California residents.  Data from Biomonitoring 
California (https://biomonitoring.ca.gov/) (Biomonitoring California 2020). 

Project 
Sample 

Year 

Geometric 
mean 

(ng/ml) 

95% 
Lower 

CI 

95% 
Upper 

CI N 
Detection 
Frequency 

Center for the 
Health Assessment 
of Mothers and 
Children of Salinas 
(CHAMACOS) 

2005 to 
2006 

85 63.1 115 49 100% 

Markers of Autism 
Risk in Babies–
Learning Early 
Signs (MARBLES)-1 

2007 to 
2008 

65.1 26 163 13 100% 

Markers of Autism 
Risk in Babies–
Learning Early 
Signs (MARBLES)-2 

2007 to 
2008 

62.4 32.2 121 15 100% 

Firefighter 
Occupational 
Exposures (FOX) 
Project 

2010 to 
2011 

52.9 38.1 73.4 101 79.20% 

Maternal and Infant 
Environmental 
Exposure Project 
(MIEEP) 

2010 to 
2011 

95.5 69.3 132 89 Not 
reported 

Biomonitoring 
Exposures Study 
(BEST) - 1.Pilot 

2011 to 
2012 

57.1 45.2 72.1 109 97.20% 

Biomonitoring 
Exposures Study 
(BEST) - 
2.Expanded 

2013 52.4 43.9 62.6 218 100% 

https://biomonitoring.ca.gov/
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Human epidemiologic studies 

Numerous human studies reporting DEP-related development and reproductive toxicity 
(DART) effects were identified in the recent literature.  A number of DART findings 
reported in epidemiologic studies are summarized here, with an emphasis on those 
published within the last two years.  The findings are organized by groups of outcomes.   

Maternal and Developmental effects 

• Urinary MEP was marginally associated with delayed implantation (prospective 
cohort study) (Chin et al. 2019). 

• Increased risk of preterm birth associated with phthalate exposure during third 
trimester was due mainly to DEP (nested case-control study) (Broe et al. 2019).  

• Averaged first and third trimester urinary MEP was associated with increased risk 
of gestational diabetes (prospective cohort study) (Shaffer et al. 2019). 

• Among subfertile couples, maternal preconception urinary MEP was associated 
with lower birth weight:placental weight ratio and prenatal urinary MEP was 
associated with lower placental weight (prospective cohort study) (Mustieles et 
al. 2019). 

• First trimester urinary MEP was associated with shorter cord blood telomere 
length (a marker of biological aging) in female infants (prospective cohort study) 
(Song et al. 2019). 

• Prenatal urinary MEP was associated with a greater ano-clitoral distance 
(masculinizing effect) in newborn girls (prospective cohort study) (Arbuckle 
2018). 

Neurodevelopmental effects 

• Prenatal urinary MEP was associated with lower gross motor function in girls at 
11 years of age (prospective cohort study) (Balalian et al. 2019).  

Reproductive system effects 

• Urinary concentration of MEP in women was associated with decreased 
fecundity (prospective cohort study) (Thomsen et al. 2017). 

• Urinary MEP was associated with DNA damage in sperm among men at an 
infertility clinic (cross-sectional study) (Hauser et al. 2007).  

Animal studies  

Findings reported in animal studies examining possible DART effects of exposure to 
DEP are summarized here. 
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Maternal and developmental effects 

• Rat: Maternal exposure on gestation day (GD) 8 through postnatal day (PND) 30 
increased the mitotic index (based on Ki-67 antigen expression) and decreased 
lactase and sucrase activities in the small intestine of offspring on PND 30 (Setti 
Ahmed et al. 2018). 

• Rat: Exposure on GD 6-15 had no effect on parameters of embryo/fetal 
development (indices of prenatal viability, such as resorption incidence, or live 
litter size), except an increased incidence of supernumerary ribs (a variation) at 
the high dose level (5% of the feed); maternal body weight gain and feed 
consumption were also decreased at the high dose (Field et al. 1993). 

• Rat: In a two-generation reproductive toxicity study, exposure had no effect on 
food consumption, although decreases in body weight gains were observed in F1 
and F2 pups before weaning.  Vaginal opening was slightly delayed in F1 
females at 15000 ppm, and F0 males exhibited an increase in liver content of 
CYP3A2, a cytochrome P450 isozyme, at 15000 ppm, and a decrease in serum 
testosterone at 3000 and 15000 ppm.  Exposure did not result in changes in 
reproductive performance or other reproductive parameters, or gross or 
histopathological findings at dose levels up to 15000 ppm in the diet (Fujii et al. 
2005). 

• Rat: Maternal exposure on GD12-20 to doses ranging up to 1000 mg/kg-day had 
no effect on birth rate, sex ratio, or number of pups per dam.  Exposure 
decreased birth weight of male pups, decreased anogenital distance at the top 
two doses, decreased testis volume, testicular testosterone (at the top dose), 
Leydig cell size, Leydig cell protein levels of INSL3 and CYP11A1, and gene 
expression of several steroidogenic-related genes in the testis (with no effect on 
star) (Hu et al. 2018). 

Mechanistic, in vitro, and other relevant data  

• Rat: In a two-generation chronic toxicity study of effects on the adrenal and 
thyroid glands, the parental generation was exposed via diet over a 100-day 
premating period and through mating, gestation and lactation for a total of 150 
days, and the F1 progeny, at body weights of 75-100 g, were similarly exposed 
for 150 days to half the dietary dose given to the previous generation.  Exposure 
altered the adrenal gland cortex in the zona fasciculata region (involved in the 
production of glucocorticoids), with vacuolations and degeneration observed in 
parental and F1 males, but not females.  In the thyroid gland, exposure resulted 
in shrinkage of follicles, loss of thyroglobulin, and fibrosis of the interfollicular 
epithelium, in parental and F1 animals of both sexes (Pereira et al. 2007). 
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• Rat: Exposure of mesencephalic neural stem cell cultures decreased cell 
migration and cell proliferation; apoptosis was not observed (Ishido and Suzuki 
2014). 

• Mouse: Exposure of mouse embryonic stem cells decreased viability in a dose-
dependent manner, stimulated intracellular ROS production, and upregulated 
gene expression of the neural ectoderm markers Pax6, Nestin, Sox1 and Sox3 at 
non-cytotoxic concentrations (Yin et al. 2018). 

• Zebrafish: Exposure of embryos from 4-hour post-fertilization (hpf) to 96 hpf 
inhibited acetylcholinesterase activity and upregulated expression of the following 
neuron-related genes: growth associated protein 43 (gap43), embryonic lethal 
abnormal vision-like 3 (elavl3), glial fibrillary acidic protein (gfap), myelin basic 
protein (mbp), α1-tubulin, and neurogenin1 (ngn1) (Xu et al. 2013a).  

• Zebrafish: Exposure of embryos from 4 hpf to 96 hpf enhanced the production of 
reactive oxygen species (ROS) and lipid peroxidation (LPO) in a concentration-
dependent manner, increased the activity of antioxidant enzymes (superoxide 
dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx)) in a 
concentration-dependent manner, and increased expression of the following 
innate immune-related genes: interferon γ (ifnγ), interleukin-1β (iliβ), Myxovirus 
resistance (mx), tumor necrosis factor α (tnfα), CC-chemokine, CXCL-clc, 
lysozyme (lyz) and complement factor C3B (c3) (Xu et al. 2013b). 

• Frog: Exposure of Xenopus laevis embryos in the 96h frog embryo teratogenesis 
assay-Xenopus (FETAX) assay resulted in malformations (edema, abnormal gut 
coiling and notochord malformations) at 50 and 100 ppm (effective concentration 
[EC]50 = 51.2 ppm); the mean minimum concentration to inhibit growth was 41.7 
ppm, and the teratogenic index was 1.25, indicating a low teratogenic risk to 
developing embryos (Gardner et al. 2016).  

• Caenorhabditis elegans: Exposure from larval stage 1 to the young adult stage 
reduced fecundity at a concentration of 1 micromolar (µM), increased lipid 
content at a concentration of 10 µM, upregulated expression of genes associated 
with lipid metabolism, including fasn-1, pod-2, fat-5, acs-6 and sbp-1, and 
vitellogenin, altered genes associated with stress response (upregulated: ced-1 
wah-1, daf-21 and gst-4; downregulated: ctl-1, cdf-2, hsp-16.1, hsp-16.48, and 
sip-1), reduced the average lifespan from 14 to 12 days, and altered expression 
of genes associated with lifespan (Pradhan et al. 2018). 
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Domoic acid 

(CAS No. 14277-97-5) 

 

Domoic acid is a neurotoxin produced by marine planktonic diatoms of the genus 
Pseudo-nitzschia.  Edible species of fish and shellfish become contaminated by 
consuming domoic acid-producing plankton.  Affected species include Dungeness crab, 
Rock crab, lobsters, razor clams, anchovies, sardines, and more.  People can be 
exposed by eating contaminated fish and shellfish.  In pregnant women, domoic acid 
readily crosses the placenta and enters the fetal brain (Grant et al. 2010), and can be 
transferred to offspring in breast milk (Maucher and Ramsdell 2005). 

Since 2015, fishing/harvesting seasons in various California coastal areas have been 
delayed or canceled due to excessively high domoic acid levels.  The US Food and 
Drug Administration (FDA) has set action levels at >30 ppm domoic acid in Dungeness 
crab viscera, and ≥ 20 ppm for all fish, shellfish and crab meat (US FDA 2020); (Wekell 
et al. 2004).  An acute reference dose of 0.075 mg domoic acid per kg body weight per 
day has been proposed (Marien 1996; Costa et al. 2010), but does not address the 
possibility of chronic exposures to lower dose levels (Costa et al. 2010; Ferriss et al. 
2017; Grattan et al. 2018; Petroff et al. 2019).  

Domoic acid passed the animal data screen, underwent a preliminary toxicological 
evaluation, and is being brought to the Developmental and Reproductive Toxicant 
Identification Committee for consultation.  This is a brief overview of the relevant studies 
identified during the preliminary toxicological evaluation.   

Human epidemiologic studies 

No human epidemiologic studies reporting developmental and reproductive toxicity 
(DART)-related effects associated with domoic acid were identified.   
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Animal studies  

Findings reported in whole animal studies examining possible DART effects of exposure 
to domoic acid are summarized here.  The primary concern for DART effects of domoic 
acid is developmental neurotoxicity (DNT).  The molecular pathway by which domoic 
acid exerts neurotoxicity is well understood, and is consistent with reported DNT 
outcomes. 

Neurodevelopmental effects, prenatal exposure only 

• Monkey (macaque): Impaired recognition memory assessed at 1-2 months 
postnatal age following prenatal exposure to doses below 0.075 mg/kg-day, the 
proposed human Tolerable Daily Intake level (Grant et al. 2019). 

• Mouse: Histological evidence of progressive neuronal damage in the 
hippocampus with increasing postnatal age and functional evidence of 
excitotoxicity, including increased neuronal calcium influx via kainite receptor 
activation into cortical and hippocampal slices prepared on postnatal day (PND) 
30 (Dakshinamurti et al. 1993). 

• Mouse: Persistent anomalies in social interactions and related resting state 
functional connectivity in the anterior cingulate that may be relevant to autism 
spectrum disorder (Mills et al. 2016; Zuloaga et al. 2016), and behavioral 
changes resembling diagnostic features of schizophrenia (Mills, 2016). 

• Mouse: Altered motor coordination and activity, and gender-specific persistent 
neurobehavioral effects at doses not inducing maternal toxicity (Shiotani et al. 
2017). 

• Mouse: Alterations in parvalbumin-positive subtype GABAergic neurons in the 
dentate gyrus and lateral amygdala (Zuloaga, 2016). 

• Rat: Memory impairments and increased susceptibility to the amnesic effects of 
scopolamine following prenatal exposure to doses below those causing overt 
clinical toxicity (Levin et al. 2005). 

• Zebrafish: Tonic-clonic convulsions, loss of touch-response reflexes, and 
stereotypic fin movements by hatched embryos following microinjection of 
fertilized eggs with domoic acid.  The fin movements, in particular, were 
considered potentially related to observations in rodents of stereotypic scratching 
following domoic acid exposure (Tiedeken et al. 2005). 

• Zebrafish: Reduced threshold to chemically-induced seizures in hatched 
embryos following microinjection of fertilized eggs with domoic acid (Tiedeken 
and Ramsdell 2007).  
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Neurodevelopmental effects, perinatal/neonatal exposure 

• Rat: Perinatal exposure of pups resulted in permanent changes in neuronal 
excitability of the adult animal (Gill and Kumara 2019).  Both generalized seizure 
and focal after-discharge thresholds were lowered, and “massive fiber sprouting” 
was significantly increased. 

• Rat: Neonatally-exposed adults spent significantly less time in “paradoxical 
sleep” then unexposed controls (Gill et al. 2009). 

• Rat: Chronic exposure of neonatal rats to low, non-convulsive doses of domoic 
acid produced lasting changes in the response to the rewarding properties of 
nicotine (Burt et al. 2008b). 

• Rat: Exposure to a single, non-lethal dose on PND 1 resulted in significant 
hypoactivity in a figure-8 maze when tested during adolescence (Levin et al. 
2006). 

• Rat: Exposure to a single dose on PND 7 resulted in motor abnormalities, spinal 
cord lesions, and death (Wang et al. 2000). 

• Rat: The neurotoxic effects of a single domoic acid exposure on PND 0, 5, 14, or 
22 were compared, and the effects of domoic acid exposure on PND 8 or 14 
were compared with those of kainic acid.  Domoic acid was the more potent 
neurotoxin, particularly when exposure occurred at earlier ages (Doucette et al. 
2000). 

• Rat: Characteristic neural cytotoxic effects of domoic acid occurred at exposures 
40 times lower by body weight in neonates than in adult rats (Xi et al. 1997). 

• Neurodevelopmental Effects, Early Postnatal Exposure Only 
• Rat: Long-term changes in α(2)-adrenoceptor binding in brain tissues of young 

males (Thomsen et al. 2016).   
• Rat: Altered spontaneous behavior in adults (Jandová et al. 2014). 
• Rat: Results of maze tasks given to adults indicated a modified behavioral 

stress/anxiety response and male-specific deficits in cognitive flexibility.  80% of 
male and 20% of females exhibited seizure behaviors.  Biochemical level effects 
included changes (some of which were male-specific) in adrenergic receptors, 
expression of mineralocorticoid and glucocorticoid receptors, and a significant 
decrease in glucocorticoid/mineralocorticoid ratio (Gill et al. 2012). 

• Rat: Domoic acid-treated male pups demonstrated early alterations in glutamate 
signaling, resulting in social withdrawal as adults; this experimental system may 
provide a model for schizophrenia (Ryan et al. 2011).   

• Rat: Exposure on PND 8-14 increased the incidence of behavioral seizures in 
adults (Perry et al. 2009). 

• Rat: Low dose (20 microgram per kilogram) exposures on PND 8-14 resulted in 
lasting changes to learning and memory (Adams et al. 2009). 
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• Rat: Alterations in behaviors dependent upon functional integrity of the midbrain 
dopamine system, namely novelty-related behaviors and in nicotine-induced 
reinforcement, were observed in juvenile, adolescent, and adult rats tested 
following domoic acid exposure on PND 8 -14 (Burt et al. 2008a; Burt et al. 
2008b).   

• Rat: Exposure on PND 8-14 significantly increased mossy fiber sprouting in the 
hippocampus of mature rat brains (Bernard et al. 2007). 

• Rat: Low dose (20 microgram per kilogram) exposures on PND 8-14 altered odor 
conditioning in a manner considered to involve NMDA glutamate receptors as 
well as kainate receptors (Tasker et al. 2005). 

• Rat: Low dose (5 or 20 microgram per kilogram) exposures on PND 8-14 
produced behavioral changes (Doucette et al. 2003), as well as permanent and 
reproducible behavioral-seizure syndrome when animals were tested as adults 
(Doucette et al. 2004).  Treated rats also showed significant increases in 
hippocampal mossy fiber staining and reductions in hippocampal cell count, as 
well as molecular level changes (Doucette et al. 2004). 

Neurodevelopmental effects in wild marine mammals following pre and/or postnatal 
exposure 

• Sea lion: Studies of stranded California sea lions unable to survive in the wild 
suggested an association between neurological disease and potential neonatal 
exposure to domoic acid (Simeone et al. 2019).  Adult sea lions died acutely or 
sometime after exposure, often expressing persistent seizures with characteristic 
necropsy findings (Silvagni et al. 2005). 

• Sea lion: Pregnant female California sea lions are regularly exposed to domoic 
acid in their diet (Ramsdell 2010; Ramsdell and Zabka 2008).  Domoic acid was 
detected in 79% of amniotic fluid samples from 24 animals (Lefebvre et al. 2018).  
The distribution of domoic acid in fetal fluid samples suggested recirculation 
through swallowing and hence continuous exposure to the developing brain.   

• Sea lion: Co-exposure to domoic acid and legacy DDTs may contribute to 
observation of an epilepsy syndrome observed among young sea lions that may 
have been exposed in utero (Ramsdell et al. 2010).  Such an effect is supported 
by studies using a zebrafish model of susceptibility to domoic acid-induced 
seizures after DDT/DDE exposure during neurodevelopment, which found 
enhanced seizure behaviors at levels of DDTs (e.g., p,p’-DDE) similar to body 
burden levels found in fetal California sea lions (Tiedeken and Ramsdell 2009).   

• Sea lion: Examination of 67 aborted or prematurely live-born pups provided 
evidence of domoic acid contributing to reproductive failure on California sea lion 
rookeries (Goldstein et al. 2009).   
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Non-DNT DART outcomes, prenatal exposure 

• Monkey (macaque): Exposure prior to and during pregnancy to low doses of 
domoic acid showed no evidence of reproductive toxicity or physical 
developmental toxicity.  While DNT outcomes were not evaluated, maternal 
animals evidenced a dose-dependent increase in intention tremors (Burbacher et 
al. 2019).   

• Zebrafish: Exposure of embryos increased mortality and cardiac defects, and 
altered expression of some cardiac development-correlated genes at 
concentrations between one and 1000 ng/L culture media (Hong et al. 2015). 

Mechanistic, in vitro, and other relevant data 

Domoic acid is a high-affinity structural analog of kainic acid, and hence a direct agonist 
of glutamic kainite receptors (Larm et al. 1997).  In sufficient concentrations, agonists of 
glutamic kainite receptors can overstimulate neurons and result in neuronal cell death 
through a process known as excitotoxicity.  Loss of these neurons can lead to functional 
deficits in learning and memory (see for example the proposed adverse outcome 
pathway for ionotrophic glutamate receptors in adult brain at 
https://aopwiki.org/aops/48).  While this proposed pathway has not been specifically 
validated for developing brains, current evidence tends to support its applicability. 

• Mouse: Exposure of cultured dopaminergic neurons prepared from embryonic 
mesencephalaresulted in cytotoxicity, as measured by increased release of 
lactate dehydrogenase into the culture medium, increased apoptotic cell death, 
decreased expression of neuronal nuclear antigen, and decreased numbers of 
dopaminergic neurons.  These effects were attributed to activation of α-amino-3-
hydroxy-5-methyl-4-isoxazoleproprionic acid/kainic acid (AMPA/KA) receptors on 
dopaminergic neurons (Radad et al. 2018). 

• Rat: Chronic exposure of cultured primary cortical neurons to a low concentration 
of domoic acid altered spontaneous electrical activity, measured using 
microelectrode arrays, leading to possible neuronal malfunction (Hogberg et al. 
2011a).  These effects were considered to be primarily mediated by the 
AMPA/KA receptor (Hogberg and Bal-Price 2011b). 
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Glyphosate and its salts 

[N-(Phosphonomethyl)glycine] 

 

Glyphosate is an organophosphorous non-selective herbicide. It is used as either the 
acid form, or as a salt (e.g., glyphosate monoammonium salt, glyphosate diammonium 
salt, glyphosate isopropylamine salt, glyphosate potassium salt).  There are over 750 
products containing glyphosate for sale in the US.  Commercial products containing 
glyphosate may have concentrations ranging from 0.96 to 94% weight per weight, 
according to the information by the Agency for Toxic Substances and Disease Registry 
(ATSDR) (ATSDR 2020).  A total of approximately 11.7 million pounds of glyphosate 
and its salts were used in 2017 in California (CDPR 2020). 

The general population may be exposed to glyphosate via dermal contact, inhalation, or 
ingestion, through use of glyphosate products at home, living in proximity to agricultural 
areas where glyphosate is used, and consumption of residues present in foods (ATSDR 
2020).  

Glyphosate passed the human and animal data screens, underwent a preliminary 
toxicological evaluation, and is being brought to the Developmental and Reproductive 
Toxicant Identification Committee for consultation.  This is a brief overview of the 
relevant studies published within the last five years and those included in the 
Toxicological Profile for Glyphosate by ATSDR (ATSDR 2020) that were identified 
during the preliminary toxicological evaluation. 

Human epidemiologic studies 

Human studies reporting -developmental and reproductive toxicity (DART)-related 
effects associated with glyphosate were identified in the recent literature (published 
within the last five years) and in the Toxicological Profile for glyphosate (ATSDR 2020).  
DART findings reported in these epidemiologic studies are summarized here.  The 
findings are organized by groups of outcomes. 
 



 

Chemical for 59 Office of Environmental Health 
DARTIC Consultation:  Hazard Assessment 
Glyphosate and its salts  October 2020 

Pregnancy outcomes 

• Increased risks of miscarriage and preterm delivery when exposure to multiple 
pesticides including glyphosate was assessed as a combined group 
(retrospective cohort study) (Savitz et al. 1997). 

• Marginally significantly increased risk of late spontaneous abortion associated 
with preconception exposure (retrospective cohort study) (Arbuckle et al. 2001). 

• Shortened gestational length significantly correlated with higher maternal 
glyphosate urine levels. However, maternal glyphosate urine levels were not 
significantly correlated with birth weight percentile or head circumference 
(prospective cohort study) (Parvez et al. 2018).  

• No effects on birth weight (retrospective cohort study) (Sathyanarayana et al. 
2010).   

• Paternal exposure was not associated with congenital malformations (case-
control study) (García et al. 1998).   

• Atrial septal defects were positively associated with higher levels of maternal 
exposure to glyphosate. (case-control study) (Rappazzo et al. 2019). 

Neurodevelopmental effects 

In the studies below, neurodevelopmental effects are associated with prenatal 
exposures. 

• Increased risk of autism spectrum disorder (ASD) (with or without intellectual 
disability) and ASD with intellectual disability (case-control study) (von Ehrenstein 
et al. 2019). 

• Increased risk of attention deficit disorder or attention-deficit/hyperactivity 
disorder (retrospective cohort study) (Garry et al. 2002). 

Female reproductive effects 

• No effect on time to pregnancy (retrospective cohort study) (Curtis et al. 1999). 

Animal studies  

Findings reported in whole animal studies examining possible DART effects of exposure 
to glyphosate published within the last five years or included in the 2020 ATSDR 
Toxicological Profile for glyphosate are summarized here. 

Developmental effects on fetal growth and development 

• Rat: Pregnant rats (F0) received a GBH in the diet at doses of 2 mg (GBH-LD: 
GBH-low dose group) or 200 mg (GBH-HD: GBH-high dose group) of 
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glyphosate/kg bw/day from gestational day (GD) 9 until weaning.  F2 offspring 
from both dose groups showed delayed growth, associated with a higher 
incidence of small for gestational age fetuses.  Structural congenital anomalies 
(conjoined fetuses and abnormally developed limbs) were detected in the F2 
offspring from the GBH-HD group (Milesi et al. 2018).  

• Rat: Depressed weight and increased incidence of unossified sternebrae were 
observed in fetuses from rat dams treated by gavage at 3,500 mg/kg/day during 
GDs 6–19 (US EPA 1992e, as cited by ATSDR 2020).  

• Rat: Exposure of F0 dams perinatally to glyphosate or a GBH in drinking water at 
doses comparable to the US glyphosate ADI (1.75 mg/kg bw/day) resulted in 
significant and distinctive changes in overall bacterial composition in fecal 
samples from F1 pups (Mao et al. 2018). 

• Rat: a transient exposure of gestating F0 generation female rats found negligible 
impacts of glyphosate on the directly exposed F0 generation, or F1 generation 
offspring pathology.  In contrast, dramatic increases in pathologies in the F2 
generation grand-offspring, and F3 transgenerational great-grand-offspring were 
observed.  The transgenerational pathologies observed include prostate disease, 
obesity, kidney disease, ovarian disease, and parturition (birth) abnormalities.  
Epigenetic analysis of the F1, F2 and F3 generation sperm identified differential 
DNA methylation regions (DMRs) (Kubsad et al. 2019). 

Neurodevelopmental effects 

• Rat: Maternal exposure via drinking water affects cholinergic and glutamatergic 
neurotransmission in the hippocampus of immature and adult offspring (Cattani 
et al. 2017). 

• Rat: Perinatal exposure to a glyphosate-based herbicide (GBH) modified the set 
point of the hypothalamic-pituitary-thyroid (HPT) axis in male offspring, with lower 
levels of TSH likely reflecting post-translational events (de Souza et al. 2017). 

• Mouse: Perinatal exposure altered expression patterns of microRNA (miRNA) 
involved in the Wnt and Notch pathways (Ji et al. 2018). 

Female reproductive effects 

• Rat: Perinatal exposure to glyphosate, or a GBH affected maternal behavior and 
modulated neuroplasticity and gut microbiota in the dam (Dechartres et al. 2019). 

• Rat: Female Wistar pups exposed to a GBH by subcutaneous (s.c.) injection 
from postnatal day (PND) 1 to PND 7 showed morphological changes in the 
uterus, characterized by increases in the incidence of luminal epithelial 
hyperplasia and increases in stromal and myometrial thickness.  Altered 
expression of proteins involved in uterine organogenetic differentiation was also 
observed (Guerrero Schimpf et al. 2017).    
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• Rat: Female rats postnatally exposed to a GBH were bilaterally ovariectomized at 
weaning (PND21) and submitted to chronic estrogen stimulation until PND60 to 
evaluate uterine morphology, cell proliferation, expression of the estrogen 
receptors (ERs) (ESR1 and ESR2) and the expression of WNT7A and β-catenin 
(CTNNB1), which are E2-modulated targets that have been implicated in altered 
uterine E2 responsiveness and neoplasia.  Early postnatal exposure to a GBH 
enhanced the sensitivity of the rat uterus to estradiol, and induced 
histomorphological and molecular changes associated with uterine hyperplasia 
(Guerrero Schimpf et al. 2018).  This was a follow up study to the study report by 
Guerrero Schimpf (2017). 

• Rat: Subchronic exposure to a GBH impaired ovary development, including 
folliculogenesis, decreased estrogen secretion, and promoted oxidative stress 
(Hamdaoui et al. 2018). 

• Rat: GBH administered from postnatal day (PND) 1 to PND 7 altered expression 
of genes involved in embryo implantation process, including Wnt5a, β-catenin, 
Wnt7a and β-catenin, Dkk1 and sFRP4 (Ingaramo et al. 2017). 

• Rat: Glyphosate and a GBH caused alterations in anogenital distance (AGD), 
age at first estrus, and serum levels of testosterone in the offspring, following 
perinatal treatment.  Hormonal status imbalances were more pronounced in 
GBH-treated rats after prolonged exposure (Manservisi et al. 2019).  

• Mouse: Gestational treatment with glyphosate or a GBH in drinking water caused 
decreases in body weight gain and ovary and liver weight in glyphosate-treated 
pregnant animals.  Additionally, histopathological alterations in the ovary 
including increased atretic follicles, interstitial fibrosis and decreased mature 
follicles were observed in dams treated with glyphosate.  The serum 
concentrations of both progesterone and estrogen were markedly altered after 
glyphosate exposure, and there were also changes in the expression of GnRH, 
LHR, FSHR, 3β-HSD and Cyp19a1 genes at the hypothalamic-pituitary-ovarian 
axis.  The sex ratio of female:male fetuses was increased following gestational 
treatment with glyphosate or GBH; no effects were observed on fetal weights or 
anogenital distance at birth (Ren et al. 2018). 

• Sheep: Treatment of ewe lambs (young females) with GBH by s.c. injection from 
PND 1 to 14 did not affect ovarian or uterine weight.  However, on PND 45, the 
ovary of GBH-exposed lambs showed altered follicular dynamics, increased 
proliferation of granulosa and theca cells, and decreased mRNA expression of 
FSHR and GDF9, whereas the uterus showed decreased cell proliferation but no 
alteration in histomorphology or gene expression (Alarcón et al. 2019).  

Male reproductive effects 

• Rat: ATSDR (2020) stated “[an] increased percentage of morphologically 
abnormal sperm was reported among rats receiving a glyphosate formulation 
from the drinking water for 8 days at 640 mg/kg/day.”  
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• Rat: ATSDR (2020) discussed one study that reported an increased incidence of 
prostatitis among male rats receiving glyphosate (technical) in the diet for up to 
two years at estimated doses of approximately 361 and 1,214 mg/kg/day.   

• Rat: Postnatal exposure to GBH by s.c. injection resulted in greater development 
of the mammary gland with increased stromal collagen organization and terminal 
end buds (TEBs) in male rats (Altamirano et al. 2018). 

• Rat: Glyphosate administration at 375 mg/kg-day in diet to 28 Wistar male rats 
decreased sperm motility, sperm plasma membrane integrity, glutathione, and 
protein levels of superoxide dismutase in the testicular tissue of rats (Avdatek et 
al. 2018).  

• Rat: Perinatal exposure to a GBH at 3.5 or 350 mg /kg bw/day altered mammary 
gland development and methylation status of estrogen receptor alpha in male 
offspring at PND 60 (Gomez et al. 2019). 

• Rat: Treatment with glyphosate for two weeks at 2.5 or 25 mg/kg-day had no 
effect on testicular histopathology or testosterone synthesis.  An equivalent dose 
of a GBH induced minor effects on steroidogenic gene expression (Johansson et 
al. 2018). 

• Rat: Exposure to GBH in drinking water for 12 weeks caused significant 
alterations in the level of all the reproductive hormones, reductions in sperm 
count, percentage motility, increase in abnormal sperm cells, and severe 
degenerative testicular architectural lesions in males (Owagboriaye et al. 2017). 

• Mouse: GBH impaired spermatogenesis, decreased sperm motility and 
concentration, and increased the sperm deformity rate (Jiang et al. 2018).  

• Mouse: Perinatal exposure in drinking water to glyphosate affected testis 
morphology, decreased serum testosterone, and decreased the number of 
spermatozoa; no effects seen with a GBH (Pham et al. 2019).  

Mechanistic, in vitro, and other relevant data 

• Rat: Pregnant rats (F0) were orally treated with a GBH at a dose of 350 mg 
glyphosate/kg bw/day through food from GD 9 until weaning.  F1 females were 
bred and uterine samples were collected on GD5 (preimplantation period) for 
evaluation on epigenetic changes in estrogen receptor alpha (ERα).  Expression 
of total ERα mRNA in uterine tissues was upregulated.  A decrease in DNA 
methylation was observed in one of the three sites evaluated in the O promoter.  
Moreover, histone H4 acetylation and histone H3 lysine 9 trimethylation 
(H3K9me3) were enriched in the O promoter in uterine tissues from GBH-
exposed rats, whereas H3K27me3 was decreased (Lorenz et al. 2019).  

• Pig: Incubation of fresh commercial semen with different concentrations of 
glyphosate or a GBH showed decreased sperm motility, viability, mitochondrial 
activity and acrosome integrity (Nerozzi et al. 2020). 
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• Pig: Glyphosate inhibited cell growth, 17-β estradiol and non-enzymatic 
scavenging activity and increased progesterone and nitric oxide secretion in 
cultured granulosa cells.  It also decreased cell viability and inhibited adipogenic 
differentiation in cultured adipose stromal cells (Gigante et al. 2018). 

• Chicken: Decreased hatchability rate of eggs treated in ovo with a GBH (Fathi et 
al. 2019). 

• Mouse: Oocytes treated with glyphosate in vitro had reduced rates of germinal 
vesicle breakdown and first polar body extrusion (Zhang et al. 2019).  

References cited in “Glyphosate and its salts” 

Alarcón R, Ingaramo PI, Rivera OE, Dioguardi GH, Repetti MR, Demonte LD, et al. 
2019. Neonatal exposure to a glyphosate-based herbicide alters the histofunctional 
differentiation of the ovaries and uterus in lambs. Mol Cell Endocrinol 482:45-56. 

Altamirano GA, Delconte MB, Gomez AL, Ingaramo PI, Bosquiazzo VL, Luque EH, et 
al. 2018. Postnatal exposure to a glyphosate-based herbicide modifies mammary gland 
growth and development in wistar male rats. Food Chem Toxicol 118:111-118. 

Arbuckle TE, Lin Z, Mery LS. 2001. An exploratory analysis of the effect of pesticide 
exposure on the risk of spontaneous abortion in an ontario farm population. Environ 
Health Perspect 109:851-857. 

ATSDR (Agency for Toxic Substances and Disease Registry). 2020. Toxicological 
Profile for Glyphosate. Available: 
https://www.atsdr.cdc.gov/toxprofiles/TP.asp?id=1488&tid=293 [accessed 3 September 
2020]. 

Avdatek F, Birdane YO, Türkmen R, Demirel HH. 2018. Ameliorative effect of 
resveratrol on testicular oxidative stress, spermatological parameters and DNA damage 
in glyphosate-based herbicide-exposed rats. Andrologia 50:e13036. 

Cattani D, Cesconetto PA, Tavares MK, Parisotto EB, De Oliveira PA, Rieg CEH, et al. 
2017. Developmental exposure to glyphosate-based herbicide and depressive-like 
behavior in adult offspring: Implication of glutamate excitotoxicity and oxidative stress. 
Toxicology 387:67-80. 

CDPR (California Department of Pesticide Regulation). 2020. 2017 Annual Statewide 
Pesticide Use Report Indexed by Chemical. Available: 
https://www.cdpr.ca.gov/docs/pur/pur17rep/statewide_ai_2017.htm [accessed 3 
September 2020. 

Curtis KM, Savitz DA, Weinberg CR, Arbuckle TE. 1999. The effect of pesticide 
exposure on time to pregnancy. Epidemiology 10:112-117. 

https://www.atsdr.cdc.gov/toxprofiles/TP.asp?id=1488&tid=293
https://www.cdpr.ca.gov/docs/pur/pur17rep/statewide_ai_2017.htm


 

Chemical for 64 Office of Environmental Health 
DARTIC Consultation:  Hazard Assessment 
Glyphosate and its salts  October 2020 

de Souza JS, Kizys MM, da Conceição RR, Glebocki G, Romano RM, Ortiga-Carvalho 
TM, et al. 2017. Perinatal exposure to glyphosate-based herbicide alters the 
thyrotrophic axis and causes thyroid hormone homeostasis imbalance in male rats. 
Toxicology 377:25-37. 

Dechartres J, Pawluski JL, Gueguen MM, Jablaoui A, Maguin E, Rhimi M, et al. 2019. 
Glyphosate and glyphosate-based herbicide exposure during the peripartum period 
affects maternal brain plasticity, maternal behaviour and microbiome. J Neuroendocrinol 
31:e12731. 

Fathi MA, Abdelghani E, Shen D, Ren X, Dai P, Li Z, et al. 2019. Effect of in ovo 
glyphosate injection on embryonic development, serum biochemistry, antioxidant status 
and histopathological changes in newly hatched chicks. J Anim Physiol Anim Nutr (Berl) 
103:1776-1784. 

García AM, Benavides FG, Fletcher T, Orts E. 1998. Paternal exposure to pesticides 
and congenital malformations. Scand J Work Environ Health 24:473-480. 

Garry VF, Harkins ME, Erickson LL, Long-Simpson LK, Holland SE, Burroughs BL. 
2002. Birth defects, season of conception, and sex of children born to pesticide 
applicators living in the red river valley of minnesota, USA. Environ Health Perspect 110 
Suppl 3:441-449. 

Gigante P, Berni M, Bussolati S, Grasselli F, Grolli S, Ramoni R, et al. 2018. 
Glyphosate affects swine ovarian and adipose stromal cell functions. Anim Reprod Sci 
195:185-196. 

Gomez AL, Altamirano GA, Leturia J, Bosquiazzo VL, Muñoz-de-Toro M, Kass L. 2019. 
Male mammary gland development and methylation status of estrogen receptor alpha in 
wistar rats are modified by the developmental exposure to a glyphosate-based 
herbicide. Mol Cell Endocrinol 481:14-25. 

Guerrero Schimpf M, Milesi MM, Ingaramo PI, Luque EH, Varayoud J. 2017. Neonatal 
exposure to a glyphosate based herbicide alters the development of the rat uterus. 
Toxicology 376:2-14. 

Guerrero Schimpf M, Milesi MM, Luque EH, Varayoud J. 2018. Glyphosate-based 
herbicide enhances the uterine sensitivity to estradiol in rats. J Endocrinol. 

Hamdaoui L, Naifar M, Rahmouni F, Harrabi B, Ayadi F, Sahnoun Z, et al. 2018. 
Subchronic exposure to kalach 360 sl-induced endocrine disruption and ovary damage 
in female rats. Arch Physiol Biochem 124:27-34. 

Ingaramo PI, Varayoud J, Milesi MM, Guerrero Schimpf M, Alarcón R, Muñoz-de-Toro 
M, et al. 2017. Neonatal exposure to a glyphosate-based herbicide alters uterine 
decidualization in rats. Reprod Toxicol 73:87-95. 



 

Chemical for 65 Office of Environmental Health 
DARTIC Consultation:  Hazard Assessment 
Glyphosate and its salts  October 2020 

Ji H, Xu L, Wang Z, Fan X, Wu L. 2018. Differential microrna expression in the 
prefrontal cortex of mouse offspring induced by glyphosate exposure during pregnancy 
and lactation. Exp Ther Med 15:2457-2467. 

Jiang X, Zhang N, Yin L, Zhang WL, Han F, Liu WB, et al. 2018. A commercial 
roundup® formulation induced male germ cell apoptosis by promoting the expression of 
xaf1 in adult mice. Toxicol Lett 296:163-172. 

Johansson HKL, Schwartz CL, Nielsen LN, Boberg J, Vinggaard AM, Bahl MI, et al. 
2018. Exposure to a glyphosate-based herbicide formulation, but not glyphosate alone, 
has only minor effects on adult rat testis. Reprod Toxicol 82:25-31. 

Kubsad D, Nilsson EE, King SE, Sadler-Riggleman I, Beck D, Skinner MK. 2019. 
Assessment of glyphosate induced epigenetic transgenerational inheritance of 
pathologies and sperm epimutations: Generational toxicology. Sci Rep 9:6372. 

Lorenz V, Milesi MM, Schimpf MG, Luque EH, Varayoud J. 2019. Epigenetic disruption 
of estrogen receptor alpha is induced by a glyphosate-based herbicide in the 
preimplantation uterus of rats. Mol Cell Endocrinol 480:133-141. 

Manservisi F, Lesseur C, Panzacchi S, Mandrioli D, Falcioni L, Bua L, et al. 2019. The 
ramazzini institute 13-week pilot study glyphosate-based herbicides administered at 
human-equivalent dose to sprague dawley rats: Effects on development and endocrine 
system. Environ Health 18:15. 

Mao Q, Manservisi F, Panzacchi S, Mandrioli D, Menghetti I, Vornoli A, et al. 2018. The 
ramazzini institute 13-week pilot study on glyphosate and roundup administered at 
human-equivalent dose to sprague dawley rats: Effects on the microbiome. Environ 
Health 17:50. 

Milesi MM, Lorenz V, Pacini G, Repetti MR, Demonte LD, Varayoud J, et al. 2018. 
Perinatal exposure to a glyphosate-based herbicide impairs female reproductive 
outcomes and induces second-generation adverse effects in wistar rats. Arch Toxicol 
92:2629-2643. 

Nerozzi C, Recuero S, Galeati G, Bucci D, Spinaci M, Yeste M. 2020. Effects of 
roundup and its main component, glyphosate, upon mammalian sperm function and 
survival. Sci Rep 10:11026. 

Owagboriaye FO, Dedeke GA, Ademolu KO, Olujimi OO, Ashidi JS, Adeyinka AA. 
2017. Reproductive toxicity of roundup herbicide exposure in male albino rat. Exp 
Toxicol Pathol 69:461-468. 

Parvez S, Gerona RR, Proctor C, Friesen M, Ashby JL, Reiter JL, et al. 2018. 
Glyphosate exposure in pregnancy and shortened gestational length: A prospective 
indiana birth cohort study. Environ Health 17:23. 



 

Chemical for 66 Office of Environmental Health 
DARTIC Consultation:  Hazard Assessment 
Glyphosate and its salts  October 2020 

Pham TH, Derian L, Kervarrec C, Kernanec PY, Jégou B, Smagulova F, et al. 2019. 
Perinatal exposure to glyphosate and a glyphosate-based herbicide affect 
spermatogenesis in mice. Toxicol Sci 169:260-271. 

Rappazzo KM, Warren JL, Davalos AD, Meyer RE, Sanders AP, Brownstein NC, et al. 
2019. Maternal residential exposure to specific agricultural pesticide active ingredients 
and birth defects in a 2003-2005 north carolina birth cohort. Birth Defects Res 111:312-
323. 

Ren X, Li R, Liu J, Huang K, Wu S, Li Y, et al. 2018. Effects of glyphosate on the 
ovarian function of pregnant mice, the secretion of hormones and the sex ratio of their 
fetuses. Environ Pollut 243:833-841. 

Sathyanarayana S, Basso O, Karr CJ, Lozano P, Alavanja M, Sandler DP, et al. 2010. 
Maternal pesticide use and birth weight in the agricultural health study. J Agromedicine 
15:127-136. 

Savitz DA, Arbuckle T, Kaczor D, Curtis KM. 1997. Male pesticide exposure and 
pregnancy outcome. Am J Epidemiol 146:1025-1036. 

von Ehrenstein OS, Ling C, Cui X, Cockburn M, Park AS, Yu F, et al. 2019. Prenatal 
and infant exposure to ambient pesticides and autism spectrum disorder in children: 
Population based case-control study. BMJ 364:l962. 

Zhang JW, Xu DQ, Feng XZ. 2019. The toxic effects and possible mechanisms of 
glyphosate on mouse oocytes. Chemosphere 237:124435. 

  



 

Chemical for 67 Office of Environmental Health 
DARTIC Consultation:  Hazard Assessment 
Manganese  October 2020 

Manganese 

(CAS #: 7439-96-5) 

Manganese (Mn) is a naturally occurring element.  It is an essential nutrient involved in 
the synthesis and activation of many enzymes and in the regulation of glucose and lipid 
metabolism in humans.  It is also toxic at higher levels.  Manganese is used primarily in 
steel production.  It is also used in a number of other products including: dry-cell 
batteries; animal feed; fertilizer; livestock nutritional supplement; paint, glazes and 
varnishes; ceramics; cosmetics; and pesticides (ATSDR 2012).  

The most common source of exposure to Mn is the diet.  Reviews of typical Western 
and vegetarian diets showed typical Mn intakes of 0.7 to 10.9 mg/day (WHO, 2004). 
However, Mn in drinking water or air has been shown in some circumstances to result in 
significant exposure.  Occupational exposures are most likely to occur via inhalation9. 

Manganese has been shown to cross the blood-brain barrier and a limited amount of 
manganese is also able to cross the placenta during pregnancy, enabling it to reach the 
developing fetus.  

Manganese passed the human and animal data screens, underwent a preliminary 
toxicological evaluation, and is being brought to the Developmental and Reproductive 
Toxicant Identification Committee for consultation.  This is a brief overview of the 
relevant studies identified during the preliminary toxicological evaluation.   

Human epidemiologic studies  

Numerous human studies reporting developmental and reproductive toxicity (DART)-
related effects associated with manganese were identified in the recent literature.  A 
number of DART findings reported in epidemiologic studies are summarized here, with 
an emphasis on those published within the last five years.  The findings are organized 
by groups of outcomes.  

 

Birth weight 

• Lower birth weight, inverted U-shaped dose-response curve, only in male infants, 
associated with maternal blood Mn levels during the 3rd trimester (prospective 
cohort study) (Yamamoto et al. 2019). 

                                            
9 https://biomonitoring.ca.gov/sites/default/files/downloads/102110Manganese.pdf 
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• Lower birth weight, associated with increases in the ratio of cord to maternal 3rd 
trimester blood Mn levels (prospective cohort study) (Ashley-Martin et al. 2018). 

• Lower birth weight, inverted U-shaped dose-response curve, associated with 
maternal urinary Mn levels in the 3rd trimester (prospective cohort study) (Hu et 
al. 2018). 

• Lower birth weight, associated with higher maternal erythrocyte Mn levels in the 
2nd trimester (prospective cohort study) (Tsai et al. 2015). 

• Low birth weight, inverted U-shaped dose-response curve, associated with 
maternal urine Mn levels (case-control study) (Xia et al. 2016). 

• No association of birth weight with Mn in drinking water (prospective cohort 
study) (Rahman et al. 2015). 

• Higher birth weight Z-score, only in female infants, associated with higher Mn 
levels in teeth (retrospective cohort study) (Cassidy-Bushrow et al. 2019). 

Birth length 

• Reduced birth length, inverted U-shaped dose-response curve, associated with 
urinary Mn levels in the 3rd trimester (prospective cohort study) (Hu et al. 2018). 

• Reduced birth length, associated with higher Mn in drinking water (prospective 
cohort study) (Rahman et al. 2015). 

• No association with maternal blood Mn levels (prospective cohort study) 
(Yamamoto et al. 2019). 

Ponderal index 

• Reduced ponderal index, inverted U-shaped dose-response curve, associated 
with urinary Mn levels in the 2nd trimester (prospective cohort study) (Hu et al. 
2018). 

Head circumference 

• Slight reduction in head circumference with low maternal blood Mn (prospective 
cohort study) (Yamamoto et al. 2019). 

• Reduced head circumference with low Mn cord blood (prospective cohort study) 
(Eguchi et al. 2019). 

• Reduced head circumference, with higher maternal erythrocyte Mn levels in the 
2nd trimester (prospective cohort study) (Tsai et al. 2015). 
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Chest circumference 

• Reduced chest circumference, associated with higher maternal erythrocyte Mn 
levels in the 2nd trimester (prospective cohort study) (Tsai et al. 2015). 

• Increased chest circumference, associated with higher maternal hair Mn 
concentration (prospective cohort study) (Mora et al. 2015b). 

Small for gestational age  

• Increased risk of small for gestational age, U-shaped dose-response curve, only 
in males, associated with maternal blood Mn levels during the 3rd trimester 
(prospective cohort study) (Yamamoto et al. 2019). 

Preterm birth  

• Increased risk of preterm birth in a dose-response manner, modified by single 
nucleotide polymorphisms, with higher maternal Mn levels in 1st trimester (nested 
case-control study) (Hao et al. 2020).  

Birth defects - neural tube defects  

• Increased risk in a dose-response manner, with higher placental Mn levels (case-
control study) (Liu et al. 2013). 

• Increased risk, with higher 2nd trimester maternal blood Mn levels (case-control 
study) (Özel et al. 2019). 

• Increased risk in a dose-response manner, with higher placental Mn (case-
control study) (Yin et al. 2020). 

• No increased risk of neural tube defects associated with maternal hair Mn levels 
(case-control study) (Yan et al. 2017). 

Neurodevelopmental effects 

• Lower cognitive score (Bayley Scales of Infant and Toddler Development), with a 
mediating effect through birth length, in 2-3 year-olds, associated with higher 
umbilical cord blood Mn levels (prospective cohort study) (Lee et al. 2018). 

• Lower cognitive, language and motor scores (Bayley Scales of Infant 
Development) associated with higher 3rd trimester maternal blood Mn levels.  
Maternal depressive symptoms were negatively associated with 
neurodevelopment scores.  Association of higher Mn levels (maternal as well as 
cord blood), and lower 24-month language scores was stronger among women 
with depressive symptoms, evaluated during the third trimester.  Inverted U-
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shaped dose-response curves associated with cord blood Mn and 
neurodevelopment scores (prospective cohort study) (Muñoz-Rocha et al. 2018). 

• Lower mental development index (MDI) and psychomotor development index 
(PDI) scores in 2-year-old children living near the Tar Creek Superfund Site, 
associated with higher maternal and cord blood Mn at delivery (prospective 
cohort study) (Claus Henn et al. 2017). 

• Decreased visuospatial learning and memory, in 10-14 year-old girls only, U-
shaped dose-response curve, associated with prenatal Mn in deciduous teeth.  
No significant associations for postnatal Mn exposure (prospective cohort study) 
(Bauer et al. 2017). 

• Decreased cognitive score (Bayley Scale of Infant and Toddler Development) in 
20-40 month-old children associated with cord blood Mn levels in a nonlinear 
manner, using Bayesian kernel machine regression to study the joint effect of co-
exposure to arsenic, Mn, and lead.  Arsenic was seen to be a potentiator of Mn 
toxicity (prospective cohort study) (Valeri et al. 2017). 

• Lower mental and psychomotor development scores at 6 months of age, inverted 
U shape dose-response curve, associated with maternal blood Mn at term 
(prospective cohort study) (Chung et al. 2015). 

• Poorer behavioral outcomes, including internalizing, externalizing, and 
hyperactivity problems, in 7 and 10.5 year-olds associated with higher Mn in 
deciduous teeth and in boys only, better motor function, memory, and/or 
cognitive abilities.  Higher Mn was also associated with poorer visuospatial 
memory and cognitive scores in children with higher prenatal lead levels 
(prospective cohort study) (Mora et al. 2015a). 

• Lower PDI scores in 2-year-olds associated with higher maternal urine Mn before 
delivery.  Higher MDI scores in girls only with increasing Mn until levels reached 
the 30th percentiles, with no effect after that threshold using Bayesian kernel 
machine regression (prospective cohort study) (Li et al. 2020). 

• Decrement in perceptual-performance skills in 4-5 year-olds associated with 
increased placental Mn in a dose-response manner.  Better memory span and 
quantitative skills associated with higher placental Mn (prospective cohort study) 
(Freire et al. 2018). 

• Lower overall cognitive and language quotients using the Comprehensive 
Developmental Inventory for Infants and Toddlers in 2 year-olds, associated with 
increased cord blood Mn (prospective cohort study) (Lin et al. 2013). 

• Lower Neonatal Behavioral Neurological Assessments scores in 3-day-old 
infants: cord blood Mn greater than or equal to 5.0 μg/L had adverse effects on 
behavior, active tone and general reactions of clusters, in a non-linear pattern 
(prospective cohort study) (Yu et al. 2014). 
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Female reproductive effects 

• Higher prolactin and luteinizing hormone levels in 7-12 year-olds (possible trigger 
for early onset of puberty) associated with higher Mn measured in children’s 
toenails, hair and blood, in a non-linear manner (cross-sectional study) (Dos 
Santos et al. 2019). 

• Lower free triiodothyronine (FT3) in pregnant women at approximately 25 weeks 
gestation associated with higher maternal blood Mn (cross-sectional study) (Guo 
et al. 2018). 

• Higher serum total testosterone levels in 12-19-year-old female adolescents, 
National Health and Nutrition Examination Survey (NHANES) 2011-2012, 
associated with higher blood Mn (cross-sectional study) (Yao et al. 2019). 

• Increased gestational blood pressure throughout pregnancy, associated with 
higher maternal blood Mn (prospective cohort study) (Vigeh et al. 2016). 

Male reproductive effects 

• Lower sperm concentration associated with higher seminal Mn in men recruited 
from a hospital (cross-sectional study) (Liu et al. 2020). 

• In Mn-exposed workers compared to controls: higher gonadotropin-releasing 
hormone and luteinizing hormone levels; lower testosterone levels; lower sperm 
progressive motility and total motility, associated with higher urinary Mn 
(occupational study) (Yang et al. 2019). 

• Increasing percentage of Annexin V+/PI- spermatozoa (indicating apoptosis) 
associated with increasing urine Mn levels, with a dose-dependent trend; two 
urine samples collected a few hours apart from male partners of couples 
attending an infertility clinic (cross-sectional study) (Wang et al. 2016). 

• Increased risk of low sperm motility and low sperm concentration; U-shaped 
dose–response curve associated with urinary Mn levels for sperm motility, sperm 
concentration and morphology (cross-sectional study) (Wirth et al. 2007). 

Animal studies 

Relevant whole animal studies examining possible DART effects of exposure to 
manganese were identified.  Findings reported in a number of these studies are 
summarized here. 

Developmental effects 

• Mouse: Maternal subcutaneous exposure at doses of 0, 2, 4, 8 and 16 mg/kg per 
day from gestation day (GD) 6-15 reduced maternal body weight and food 
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consumption, and increased maternal mortality (10% and 32%, respectively) at 
the two highest doses.  At the three highest doses, reduced fetal (GD 18) body 
weights, increased number of late resorptions, and delayed ossification of 
sternabrae were observed (Sánchez et al. 1993). 

• Mouse: Exposure of 21-day old males and females via gavage (0, 0.013, 0.13 
and 1.3 mg/kg-day) for 60 days prior to mating, with continued dosing of dams 
throughout pregnancy and lactation, resulted in dose-dependent Mn 
bioaccumulation in pup brain, as well as decreased non-protein thiol levels and 
glutathione S-transferase and acetylcholinesterase activities, and increased 
oxidized lipids and proteins in the brains of offspring (Okada et al. 2016).  

• Rat: Maternal exposure via drinking water during gestation through weaning 
resulted in higher body weights in offspring for the first week of life, learning and 
memory deficits in female offspring, and hypoactivity and increased anxiety in 
male offspring (Betharia and Maher 2012). 

• Rat: Maternal intravenous exposure at doses of 0, 5, 20, or 40 µmol/kg on GD 6-
17 significantly reduced mean fetal weights at the mid and high dose, increased 
post-implantation losses at the high dose, increased the number of dead fetuses 
(one at the low dose and five at the high dose), increased the number of litters 
(and fetuses) with abnormal flexure in a dose-dependent manner, increased 
skeletal malformations in a dose-dependent manner, and increased the 
occurrence of reduced ossifications in a dose-dependent manner (Treinen et al. 
1995). 

Female reproductive effects  

• Rat: Exposure to doses of 0, 2.5, 5 or 10 mg/kg-day during postnatal days (PND) 
21–32 resulted in earlier puberty onset age and advanced ovary and uterus 
development at the high dose, and in the preoptic area-anterior hypothalamus, 
decreased levels of gamma-aminobutyric acid receptor (GABAAR) at all doses 
and increased levels of nitric oxide at the mid and high dose (Yang et al. 2020). 

• Rat: Exposure of females to 10 mg/kg-day from PND 12-29 increased serum 
levels of luteinizing hormone, follicle stimulating hormone and estradiol and 
increased Mn levels in the medial basal hypothalamus and preoptic area.  In a 
second experiment, continuation of exposure from PND 12 to the date of vaginal 
opening resulted in earlier age at vaginal opening (Pine et al. 2005). 

• Rat: Exposure of females from PND 22-35 to 0, 1.0, 3.3, or 10 mg/kg-day 
decreased ovarian weights at the low and mid dose, decreased uterine and 
oviduct weights at the mid dose, decreased the thickness of the uterine 
myometrium at the low dose and increased the thickness at the mid and high 
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dose, increased serum luteinizing hormone at the low dose and decreased 
serum follicle stimulating hormone at the low and high dose (Kim et al. 2012). 

Male reproductive effects 

• Mouse: Daily exposure of 22-day old males to MnCl2 (0, 15, 30 or 60 mg/kg) for 
45 days resulted in the following: reduced androgen-dependent organ weights; 
altered levels of fecal androgenic metabolites, sperm parameters (e.g., 
decreased progressive motility, vitality, sperm concentration, and daily sperm 
production), and antioxidant enzyme activities in the testis (decreased catalase 
and glutathione reductase, increased superoxide dismutase and glutathione S-
transferase); decreased testis non-protein thiol content; increased lipid 
peroxidation in the testis; and reduced acetylcholinesterase activity in the 
hypothalamus (Souza et al. 2020). 

• Mouse: Exposure of males and females via gavage (0, 0.013, 0.13 and 1.3 
mg/kg-day) for 60 days prior to mating, with continued dosing of dams throughout 
pregnancy and lactation, and direct exposure of some male offspring (F1 males) 
post-weaning for 60 days resulted in the following: decreased sperm 
concentration in F0 and F1 males (both with or without direct exposure post-
weaning); altered F1 sperm parameters (decreased progressive motility with or 
without direct exposure post-weaning, decreased vitality without post-weaning 
exposure); and decreased antioxidant enzyme activity in the testis (catalase, 
glutathione S-transferase) and seminal vesicles (superoxide dismutase) in F1 
males without post-weaning exposure (Souza et al. 2019).  

• Mouse: Exposure of adult males for 14 days via intraperitoneal injection (0, 12.5, 
25, and 50 mg/kg/day) reduced sperm count at the mid and high dose, slightly 
increased the number of sperm shape deformities at the high dose, increased 
serum levels of gonadotropin-releasing hormone, follicle stimulating hormone, 
luteinizing hormone, and prostaglandin E2, decreased serum testosterone levels, 
and increased gene and protein expression in the hypothalamus of the EP1 and 
EP2 receptors (Wu et al. 2020). 

• Rat: Exposure of adult males to an oral dose of 15 mg/kg-day for 45 days, 
decreased sperm count and progressive motility, and increased sperm 
morphological defects without affecting sperm viability.  Histopathological 
observations in the testis include decreased germinal epithelium and 
vacuolization, and in the epididymis include tubule vacuolization with very few 
sperm cells.  The following biochemical measurements were observed in testis, 
epididymis, and brain: decreased superoxide dismutase, catalase and 
glutathione-S-transferase activities; increased myeloperoxidase activity; 
decreased levels of reduced glutathione; and increased levels of hydrogen 
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peroxide, nitric oxide, lipid peroxidation, tumor necrosis factor alpha, and 
caspase-3.  In addition, acid phosphatase, alkaline phosphatase and lactate 
dehydrogenase activities were decreased in the testis, and serum levels of 
luteinizing hormone, follicle stimulating hormone and testosterone were 
decreased (Adedara et al. 2017). 

• Rat: Exposure of adult males for 30 days to supraphysiologic levels (5 mg/kg or 
15 mg/kg, intraperitoneal) decreased body weight at the high dose, reduced 
relative epididymis and ventral prostate weights, reduced the percentage of 
normal seminiferous tubules and increased the percentage of abnormal 
seminiferous tubules in a dose dependent manner, decreased the height of 
seminiferous epithelium at the high dose, increased vacuoles at both doses and 
degeneration of the seminiferous epithelium at the high dose, decreased sperm 
number and accelerated sperm transit time in the cauda epididymis, decreased 
sperm motility (progressive movement) at both doses, and increased sperm head 
abnormalities at both doses (Gomes Silva et al. 2018). 

• Rat: Exposure of adult males to an oral dose of 15 mg/kg-day for 14 days, 
decreased epididymal sperm count and progressive motility, and increased 
sperm abnormalities without affecting sperm viability.  The following biochemical 
measurements were observed in testis and epididymis: decreased superoxide 
dismutase, catalase, glutathione peroxidase, and glutathione-S-transferase 
activities; increased myeloperoxidase activity; decreased levels of reduced 
glutathione; and increased levels of reactive oxygen and nitrogen species, nitric 
oxide, and lipid peroxidation.  In addition, acid phosphatase, alkaline 
phosphatase, lactate dehydrogenase, and glucose-6-phosphate dehydrogenase 
activities were decreased in the testis, and serum levels of luteinizing hormone, 
follicle stimulating hormone and testosterone were decreased (Owumi et al. 
2020). 

• Rat: Exposure of adult males to an oral dose of 50 mg/kg-day for 30 days 
increased sperm abnormalities; decreased gonadosomatic index, sperm 
motility, and sperm count; reduced serum levels of testosterone and luteinizing 
hormone; elevated testes levels of malondialdehyde, nitric oxide, and 8-OH-2′-
deoxyguanosine; decreased testes levels of superoxide dismutase, glutathione, 
and catalase; and decreased the diameter of seminiferous tubules (ST), height 
of germinal epithelium, number of spermatogonia/ST, spermatocytes/ST, 
spermatids/ ST, and Leydig cells/intertubular area (Mohammed et al. 2018). 

Mechanistic, in vitro and other relevant data 

• Human: In healthy term singleton pregnancies, higher Mn in infant toenails was 
associated with increased methylation of the placental glucocorticoid receptor 
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(NR3C1) gene; this receptor is a key regulator of hypothalamic–pituitary–adrenal 
axis activity.  When stratified by sex, the effect was strengthened in females, 
although the interaction was not significant and the effect in males was no longer 
significant (Appleton et al. 2017). 

• Rat: Exposure of immature females to 10 mg/kg MnCl2 from PND 12 through 22 
or 29 increased serum estradiol levels and gonadotropin-releasing hormone 
gene expression in the preoptic area and rostral hypothalamus on PND 29, along 
with upregulation of other genes associated with puberty (Srivastava et al. 2013). 

• Zebrafish: Exposure of fertilized embryos to MnCl2 (0, 10, 25, 50 µmol/L) for 5 
days resulted in decreased hatching rate at 48 h, increased mortality and 
malformations (primarily pericardial edema) at 96 and 120 h, and reduced larval 
swim distance and average velocity (assessed on day 5) in the mid and high 
dose groups.  Central nervous system expression of the nrxn2aa and nrxn2ab 
genes, which encode for synaptic adhesion proteins, was altered (nrxn2ab was 
upregulated at 24 h and downregulated at 48 h; nrxn2aa was downregulated at 
72 h) (Tu et al. 2017). 
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Neonicotinoid pesticides: 

Acetamiprid 

(CAS No. 135410-20-7) 

 

Acetamiprid is a systemic neonicotinoid insecticide used to control sucking insects like 
aphids and the cherry fruit fly (US EPA 2020).  According to the California Department 
of Pesticide Regulation (DPR), approximately 61,000 pounds of acetamiprid were used 
for nut crops (walnuts, almonds, pistachios, pecans) and cotton in California in 2017 
(CDPR 2017). 

Acetamiprid passed the animal data screen, underwent a preliminary toxicological 
evaluation, and is being brought to the Developmental and Reproductive Toxicant 
Identification Committee for consultation.  This is a brief overview of recent relevant 
studies identified during the preliminary toxicological evaluation.  

Human epidemiologic studies 

One human study reporting developmental and reproductive toxicity (DART)-related 
effects of acetamiprid was identified. 

• N-Desmethylacetamiprid (DMAP), a metabolite of acetamiprid, was measured in 
urine samples collected from very low birth weight infants at birth (n = 57, 
detection frequency 24.6%, median level 0.048 ppb) or on postnatal day (PND) 
14 (n = 59, detection frequency 11.9%, median level 0.09 ppb).  DMAP was 
detected at higher rates and levels in small for gestational-age infants compared 
to appropriate gestational-age infants (cross-sectional study) (Ichikawa et al. 
2019). 

Animal studies 

Findings reported in whole animal studies examining possible DART effects of exposure 
to acetamiprid are summarized here. 
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Parental and developmental effects 

• Rat: In a developmental toxicity study with gestational exposure, conducted 
according to FIFRA (Federal Insecticide Fungicide & Rodenticide Act) guidelines, 
an increase in a skeletal variation (shortening of the 13th rib) was observed at 
the high dose of 50 mg/kg-day (CDPR 2000) (US EPA 2013). 

• Rat: In a standard reproduction study conducted according to FIFRA guidelines 
with exposure during premating, gestation and lactation, reduced food 
consumption and body weights were observed in parental animals of both sexes 
of both generations at the high dose (800 ppm).  Decrements in pup weights (F1 
and F2 pups) and reduced pup survival throughout the lactation period (in F2 
pups) occurred at the high dose, as well as modest decrements in absolute brain 
weights in F1 adult males and females, reductions in litter size, viability, and 
weaning indices among F2 offspring, and significant delays in the age to attain 
vaginal opening and preputial separation in F2 offspring (CDPR 2000) (US EPA 
2013). 

• Rat: In a developmental neurotoxicity study, maternal effects observed at the 
high dose of 45 mg/kg-day consisted of decreased body weight and body weight 
gains, while offspring effects at the high dose included decreased body weights, 
body weight gains, and survival on postnatal days (PNDs) 0-1, with 3 dams 
experiencing total litter loss on PND 1 (12% of litters).  No effects on 
developmental landmarks were noted (US EPA 2008) (US EPA 2013). 

• Rabbit: In a developmental toxicity study conducted according to FIFRA 
guidelines, thoracic vertebral arches and fused ribs were observed in two fetuses 
(one from each litter) at the high dose of 30 mg/kg-day (CDPR 2000). 

Neurodevelopmental effects 

• Rat: In a developmental neurotoxicity study with maternal exposure from 
gestation day (GD) 6 to lactation day 21, a decrease in maximum auditory startle 
response was observed on PND 20 and PND 60 in high dose (45 mg/kg-day) F1 
males, as well as a slight increase in the number of errors in the Biel maze just 
after weaning.  There were no treatment-related macroscopic or microscopic 
findings noted for brain spinal cord or peripheral nerves or brain morphometry 
measurements in F1 animals, nor were any effects on motor activity noted at any 
age or dose level (US EPA 2008) (Sheets et al. 2016). 

• Mouse: Exposure to acetamiprid from PND 12 to PND 26 by oral gavage 
impaired neurogenesis and altered microglial profiles (an increase in the number 
of amoeboid-type and activated M1-type microglia) in the developing 
hippocampal dendate gyrus (Nakayama et al. 2019). 
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• Mouse: Exposure on GD 6-13 induced neurodevelopmental toxicity and 
increased microglial activation (increased Iba1-immunoreactive and amoeboid-
type microglia, increased M1/M2 microglial ratio) in the developing brain with 
hypoplasia of the cortical plate and decreased neurogenesis on GD 14 in the 
dorsal telencephalon and neocortex, and abnormal neuronal distribution in the 
neocortex (Kagawa and Nagao 2018). 

• Mouse: Maternal exposure from GD 6 to lactation day 21 at 0, 1 or 10 mg/kg-day 
altered anxiety-related and socio-sexual behaviors in male offspring, with a 
reduction of anxiety level in the light-dark transition test at both doses and an 
increase in sexual and aggressive behaviors at the low dose.  No behavioral 
effects were observed in female offspring, and no effects were observed in either 
sex on behavioral flexibility, numbers of vasopressin-immunoreactive cells in the 
paraventricular nucleus of the hypothalamus, or serum testosterone levels (Sano 
et al. 2016). 

Male reproductive system effects 

• Rat: Exposure of males for 90 days decreased sperm concentration in a dose 
dependent manner, non-significantly decreased plasma testosterone, increased 
plasma gonadotropin-releasing hormone, follicle-stimulating hormone, and 
luteinizing hormone at the low and mid doses, and in the testis increased lipid 
peroxidation and apoptosis at the mid and high doses and decreased glutathione 
and cell proliferation at all doses (Arıcan et al. 2020). 

• Rat: Exposure of males 5 days/week for 9 weeks decreased body weight gain, 
absolute weights of the testes, epididymis, and seminal vesicles, number of 
spermatids, sperm count, sperm motility, and sperm viability, increased abnormal 
sperm, decreased plasma testosterone, and increased the plasma level of 
thiobarbituric acid-reactive substances (an indicator of lipid peroxidation) 
(Mosbah et al. 2018). 

• Rat: Exposure of males for 35 days caused oxidative stress and mitochondrial 
damage in Leydig cells and inhibited the synthesis of testicular ATP and cAMP.  
Subsequent testosterone biosynthesis was disrupted by a decrease in the rate of 
conversion of cholesterol to testosterone and by preventing cholesterol from 
entering the mitochondria within the Leydig cells (Kong et al. 2017). 

• Mouse: Exposure of 3-week-old males via drinking water to an acetamiprid-
containing insecticide formulation (two levels) for 180 days decreased body 
weight, affected testicular histopathology (abnormal seminiferous tubules), and 
decreased expression of testosterone metabolism-associated genes (Lhr, Star, 
Cyp11a1, Cyp17a1 and Hsd17b1), cell proliferation-associated marker genes 
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(Ki67 and Top2a), and the neonicotinoid receptor nAChRα7 gene (Terayama et 
al. 2018). 

• Mouse: Exposure of adult males via intraperitoneal injection once, or twice (on 
successive days) had no effect on sperm morphology (Rasgele 2014). 

• Guinea pig: Exposure of adult males to an acetamiprid-containing insecticide 
formulation for 90 days affected a measure of sexual behavior (increased time-
to-mounting of females), decreased serum testosterone, decreased relative 
testes and accessory gland weights, decreased sperm count, motility, and the 
number of spermatozoa with intact plasma membranes, increased sperm head 
and tail abnormalities, affected testicular histopathology (decreased immature 
germinal cells in lumen, alterations in basal membrane of seminiferous tubules), 
increased testis catalase and superoxide dismutase activities and lipid 
peroxidation, and decreased testis glutathione levels (Guiekep et al. 2019). 

Mechanistic, in vitro, and other relevant data  

• Zebrafish: Exposure of embryos from 6 to 120 hours post-fertilization affected 
development, with impaired spontaneous movement identified as the most 
sensitive end point.  Mortality and teratogenic effects were increased at 
concentrations greater than 263 mg/L, with bent spine being the main 
malformation (Ma et al. 2019)  

• Pig: In vitro exposure of oocytes for 44 hours decreased the nuclear maturation 
rate, and increased the occurrence of dispersed, irregular chromosomes in 
matured (metaphase II stage) oocytes (Ishikawa et al. 2015). 

• Mouse: Exposure of 2-cell stage embryos for 72 h decreased the number of 
embryos reaching the blastocyst stage (at concentrations of 100 µM) and the 
average number of cells per blastocyst (at concentrations of 10 µM and above) 
(Babeľová et al. 2017). 

• Rat: Exposure for 14 days of neuron-enriched cultures from neonatal cerebellum 
resulted in a slight disturbance in Purkinje cell dendritic arborization, with no 
effects on neuron or glial cell morphology.  Transcriptome microarray analysis 
identified differential expression in exposed versus control cultures in 48 genes, 
including nine genes essential for neurodevelopment, which were similarly 
altered by nicotine (Kimura-Kuroda et al. 2016). 

• Mouse: Exposure of spermatozoa to 5 mM for 30 minutes had no effect on sperm 
motility or DNA fragmentation; however, use of exposed sperm prior to the in 
vitro fertilization process decreased numbers of 2-cell embryos and blastocysts.  
Exposure of a mixture of spermatozoa and oocytes (i.e., during the in vitro 
fertilization process) to 500 µM affected fertilization and embryonic development 
in vitro, decreasing the number of morulae and blastocysts; similar results were 
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observed following exposure of naturally fertilized zygotes to 500 µM, while 
similar exposure of 2-cell embryos was without effect (Gu et al. 2013). 
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Clothianidin 

(CAS No. 210880-92-5) 

 

Clothianidin is a systemic, neonicotinoid insecticide used to control sucking insects, 
some chewing insects including termites, and soil insects.  Clothianidin is also a major 
metabolite and degradate of another neonicotinoid insecticide, thiamethoxam (US EPA 
2020).  Clothianidin is used on a variety of crops, including lettuce, broccoli, and wine 
grapes, and for structural pest control.  According to the California Department of 
Pesticide Regulation (DPR), 25,949 pounds of clothianidin were used in California in 
2017 (CDPR 2017). 

Clothianidin passed the animal data screen, underwent a preliminary toxicological 
evaluation, and is being brought to the Developmental and Reproductive Toxicant 
Identification Committee for consultation.  This is a brief overview of the relevant studies 
identified during the preliminary toxicological evaluation.  

Human epidemiologic studies  

No human studies reporting developmental and reproductive toxicity (DART)-related 
effects of clothianidin were identified.  

Animal studies  

Findings reported in whole animal studies examining possible DART effects of exposure 
to clothianidin are summarized here.  
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Maternal and developmental effects   

• Rat: In a guideline developmental (teratology) study with exposure on gestation 
days (GD) 6-19, no adverse effects were observed up to a high dose of 125 
mg/kg-day (CDPR 2003). 

• Rat: In a two-generation dietary reproduction study conducted according to 
FIFRA guidelines, body weight decrements were observed in both parental 
generations at the high dose level of 2500 ppm (10 mg/kg-day M; 213 mg/kg-day 
F) and in F0 dams in the top two dose levels on lactation day 14.  Decreased 
birth weights were observed in F1 pups, along with marked pup body weight 
decrements during and after the lactation period, decrements in weanling brain 
weight in both generations (F1 and F2 weanlings), as well as delays in 
developmental landmarks of preputial separation and vaginal patency in F1 pups 
(CDPR 2003). 

• Mouse: In two separate studies, maternal exposure during gestation and 
lactation had no effect on litter size, litter weight, or sex ratio at birth, and 
increased the average body weight of male and female offspring during the early 
lactation period in a dose-related manner (Tanaka 2012a),(Tanaka 2012b). 

• Rabbit: In a guideline developmental (teratology) study with exposure on GD 6-
26, increased maternal mortality, abortions and premature deliveries were 
observed at the top two dose levels (75 and 100 mg/kg-day), and increased 
resorptions and decreased mean pup weight were observed at the top dose.  
Fetal effects included increased absence of the intermediate lung lobe and 
delays in bone ossification in the top two dose groups (CDPR 2003). 

Neurodevelopmental effects 

• Rat: In a guideline developmental neurotoxicity study with exposure in the diet 
from GD 0 through lactation day 22, findings included reduced body weights of 
dams and pups at the high dose (1,750 ppm), increased mortality of offspring 
between postnatal day (PND) 25 and 27 (2 males, 3 females) at the high dose, 
body weight decrements at PND 22 in female offspring, and a slight (transient) 
decrease in auditory startle response in the 500 ppm group on PND 22-23 
(CDPR 2003). 

• Rat: 90-day exposure of males, starting at 7 days of age to doses ranging from 2-
24 mg/kg-day decreased performance at the high dose in the probe test 
measuring consolidation of memory, while there was no effect on spatial learning 
in the Morris water maze test or on the expression of related genes in the 
hippocampus (N-methyl D-aspartate 1 [Grin1], muscarinic receptor M1, 
synoptophysin [Syp] and growth-associated protein 43 [Gap-43) (Ozdemir et al. 
2014).  

• Rat: 30-day exposure of 8- to 9-week-old males to doses ranging from 2-24 
mg/kg-day had no effect on spatial learning in the Morris water maze test, 
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consolidated memory in the probe test, or on the expression of related genes in 
the hippocampus (Grin1, muscarinic receptor M1, Syp and Gap-43) (Ozdemir et 
al. 2014).  

• Mouse: Maternal exposure during gestation and lactation produced adverse 
effects in developmental neurobehavioral parameters in offspring.  Specifically, in 
PND 7 female offspring, surface righting was accelerated in a dose-related 
manner, in 3-week old male offspring, the average speed in an exploratory 
behavior test was increased in a dose-related manner, and male offspring in the 
mid-dose group showed more activity in some measured variables for 
spontaneous behavior (Tanaka 2012a). 

• Mouse: Exposure from 5 weeks of age in the F0 generation to 11 weeks of age in 
the F1 generation produced adverse effects in neurobehavioral parameters in F0 
adult males (increased exploratory behavior), and in F1 offspring of both sexes.  
Specifically, in F1 males on PND 7 swimming head angle was accelerated in a 
dose-related manner, in F1 females on PND 7 negative geotaxis was accelerated 
in a dose-related manner, and in tests of exploratory behavior, the rearing of F1 
females was increased in a dose-related manner (Tanaka 2012a). 

Male reproductive effects 

• Mouse: Maternal exposure from gestation day (GD) 1 to postnatal day (PND) 14 
decreased testis weights and the number of germ cells per seminiferous tubule in 
male offspring on PND 14 (Yanai et al. 2017). 

• Mouse: Exposure of adult males for four weeks resulted in a dose-dependent 
increase in vacuolated seminiferous tubule epithelia and decrease in staining for 
the antioxidant enzyme glutathione peroxidase 4 in spermatids (Hirano et al. 
2015). 

• Rat: 90-day exposure of 8- to 9-week-old males to doses ranging from 2-24 
mg/kg-d (selected to fall below the reported no-observable-adverse-effect level 
for male rat reproductive system effects), resulted in decreased weights of 
epididymis, right cauda epididymis and seminal vesicles, and increased lipid 
peroxidation, cholesterol, and palmitic, linoleic and arachidonic acid levels in the 
testis.  No effects were observed on serum testosterone, sperm parameters (e.g. 
concentration, motility and morphology), sperm DNA fragmentation, the apoptotic 
index in the seminiferous tubules, or α-tocopherol or glutathione in the testis (Bal 
et al. 2013).  

• Rat: 90-day exposure of males, starting at 7 days of age, to doses ranging up to 
32 mg/kg-d (the reported no-observable-adverse-effect level for male rat 
reproductive system effects) resulted in decreases in the absolute weights of 
right cauda epididymis and seminal vesicles and in body weight at the high dose; 
decreases in epididymal sperm concentration and increases in sperm head and 
tail abnormalities at the mid (8 mg/kg-d) and high dose, and increased apoptosis 
of germ cells, seminal DNA fragmentation, and cholesterol in the testes, and 
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decreased testicular glutathione and serum testosterone at the high dose (Bal et 
al. 2012).  

Female reproductive effects 

• Rat: In a chronic two-year (guideline) study with doses up to 3000 ppm in the diet 
(157 mg/kg-day M; 193 mg/kg-day F), a dose-related increase in the incidence of 
ovarian interstitial gland hyperplasia was observed (CDPR 2003).  

Mechanistic, in vitro, and other relevant data  

• Mouse: Exposure of 2-cell stage embryos for 72 h to 100 µM decreased the 
number of embryos reaching the blastocyst stage and the average number of 
cells per blastocyst (Babeľová et al. 2017). 
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Imidacloprid 

(CAS No.138261-41-3) 

 

Imidacloprid is a neonicotinoid insecticide used to control sucking insects; some 
chewing insects including termites; soil insects; and fleas, flies and lice on livestock 
(topical use) and dogs and cats (oral and topical use)10.  It is used on a variety of crops, 
mostly on vegetables (e.g., lettuce, broccoli), fruits (peaches, grapes, oranges, 
cantaloupe) and cotton.  According to the California Department of Pesticide Regulation 
(DPR), in 2017 approximately 587,000 pounds of imidacloprid were applied to over 1.6 
million acres in California (CDPR 2017). 

Imidacloprid passed the animal data screen, underwent a preliminary toxicological 
evaluation, and is being brought to the Developmental and Reproductive Toxicant 
Identification Committee for consultation.  This is a brief overview of relevant studies 
identified during the preliminary toxicological evaluation.  

Human epidemiologic studies 

Human epidemiologic studies reporting developmental and reproductive toxicity 
(DART)-related effects associated with imidacloprid were identified in the recent 
literature and are summarized here.   

Birth defects 

• In a hypothesis generating study of California infants or fetuses with congenital 
heart defects from the California Birth Defects Monitoring Program with exposure 
estimated categorically (none/any) from state pesticide use records between 
1997–2006 and proximity of residence during pregnancy to use, an increase in 
adjusted odds ratio was observed for a group of four congenital heart defects, 
i.e., Tetralogy of Fallot (case-control study) (Carmichael et al. 2014). 

                                            
10 https://parasitipedia.net/index.php?option=com_content&view=article&id=2467&Itemid=2735 
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• In a hypothesis generating study of California infants or fetuses with birth defects 
from the California Birth Defects Monitoring Program with exposure estimated 
categorically (none/any) from state pesticide use records between 1997–2006 
and proximity of residence during pregnancy to use, an increase in adjusted odds 
ratio was observed for anencephaly (marginally significant) (case control study) 
(Yang et al. 2014). 

• In a hypothesis generating study of California infants or fetuses from the 
California Birth Defects Monitoring Program with exposure estimated 
categorically (none/any) from state pesticide use records between 1997–2006 
and proximity of residence during pregnancy to use, no association was found for 
a birth defect (gastroschisis); when stratified by maternal age an increase in odds 
ratio was observed for women 20-24 years old (case control study) (Shaw et al. 
2014). 

Neurodevelopmental effects 

• In a study of autism spectrum disorder, exposure was estimated categorically 
(never/ever; and prenatal never/ever/consistent/occasional) based on maternal-
reported household usage of flea or tick control on pets (in utero through 
childhood).  A nonsignificant increase in adjusted odds ratio was observed for 
exposure during pregnancy (compared to early life exposure, though results were 
considered imprecise) and an increase in adjusted odds ratio was observed for 
consistent/frequent users (marginally significant) (case control study) (Keil et al. 
2014). 

Animal studies  

Findings reported in whole animal studies examining possible DART effects of exposure 
to imidacloprid are summarized here.  

Maternal and developmental effects  

• Rabbit: Increased resorptions, lower fetal body weight at the high dose in a study 
with gestational exposure (gestation day [GD] 6-18) conducted according to 
FIFRA (Federal Insecticide Fungicide & Rodenticide Act) guidelines (CDPR 
2013). 

• Rat: Decreased body weight gain and reduced food consumption of dams, and a 
high percentage of male fetuses and increased incidence of wavy ribs in the 
fetuses of the high dose (94.1 mg/kg/day) group in a study with gestational 
exposure (GD 6-15) conducted according to FIFRA guidelines (CDPR 2013) 
(Sheets et al. 2016). 
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• Rat: Decreased body weight and weight gain of dams and pups on postnatal day 
(PND) 21 in a developmental neurotoxicity (DNT) study conducted according to 
FIFRA guidelines with exposure from GD 0-PND 21 (CDPR 2013). 

• Rat: Gestational exposure induced hyperglycemia, insulin resistance and 
dyslipidemia in Wistar rat dams and their offspring and the effects on offspring 
persisted until adult age (Ndonwi et al. 2020).  

• Rat: Age-dependent adverse effects on the developing immune system after 
exposure during GD 6–PND 21, which was aggravated when exposure continued 
through PND 42, leading to a compromised immune system (Gawade et al. 
2013).  

• Rat: Adult females (parent generation 1 (P1) and P2) were exposed in diet (0, 
100, 250, 700 ppm) before mating, through mating, gestation and lactation for 84 
and 105 days, respectively.  Exposure decreased food consumption and body 
weight gain in P1 at 700 ppm, and decreased body weight gain in P1-offspring 
until weaning, with decreased premating body weights in male P1-offspring  
(Suter et al. 1990, as cited in (CDPR 2013) (Mikolić and Karačonji 2018).  

• Rat: Exposure of adult F0 females for 10 weeks or more and F1 parents for 8 
weeks or more via the oral route at 20 mg/kg-day resulted in decreased ovarian 
weights and food consumption in F0 and F1 females, increased F1 birth weights, 
decreased F1 and F2 body weights at PND 21, and increased serum alanine 
aminotransferase (ALT) in F1 and F2 females (Vohra and Khera 2016). 

• Mouse: Exposure over the early developmental period (GD 4-PND 21) reduced 
the number of offspring that were born and survived for more than one week 
(fecundity), decreased body weight in young adult male offspring, and decreased 
triglycerides levels in young adult offspring (Burke et al. 2018). 

Neurodevelopmental effects  

• Rat: Prenatal exposure (GD 0-PND 21) DNT study conducted according to 
FIFRA guidelines resulted in reduced motor activity levels and changes in 
dimensions of brain structures (reduction in the thickness of corpus callosum and 
decreased width of caudate putamen) on PND 11, as well as decreased body 
weight on PND 21 in F1 animals in the high dose group (750 ppm).  Information 
on brain morphology in lower dose groups was not available (CDPR 2013) 
(Sheets et al. 2016). 

• Rat: Newborn males were dosed daily via gavage from birth for 3 months to 
examine the effects of exposure on learning and memory during this critical 
period of neurodevelopment, and assessed using the Morris water maze and 
probe trial tests.  Imidacloprid increased escape latency in the Morris water maze 
on test days 3-5, and decreased time spent swimming in the target quadrant in 
the probe trial test.  No significant treatment-related differences in expression of 
genes synthesizing proteins known to be associated with learning in brain tissues 
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such as Grin1, Syp Gap43 or M1 were observed in the hippocampus (Kara et al. 
2015).  

• Rat: Gestational exposure (GD 9) to a single large, nonlethal dose of imidacloprid 
produced significant neurobehavioral deficits on PND 30, which corresponds to 
early adolescence in humans.  Neurobehavioral deficits included sensorimotor 
impairments that were associated with increased acetylcholineesterase (AChE) 
activity in plasma and in the midbrain, cortex and brainstem.  Exposure was also 
associated with increased ligand-biding densities for [3H]AFDX 384, a ligand for 
m2mAChR, but not [3H]cytosine, a ligand for alpha4beta2 type nAchR, in the 
cortex.  Histopathological evaluation found no alterations in surviving neurons in 
various brain regions, while increased expression of glial fibrillary acidic protein 
(GFAP) was observed in glia in the motor cortex layer III, CA1, CA3, and the 
dentate gyrus (DG) subfield of the hippocampus of the offspring on PND 30 
(Abou-Donia MB 2008). 

• Mouse: Exposure from PND 12–26 reduced neurogenesis in the hippocampal 
DG and increased the number of amoeboid-type microglia and activated M1-type 
microglia in the DG (Nakayama et al. 2019). 

• Mouse: Exposure over the early developmental period (GD 4-PND 21) induced 
long-lasting changes in behavior, including increased motor activity (assessed 
between PND 43-47), enhanced social dominance in the tube test (assessed 
between PND 54-64), reduced depressive-like behavior in the forced swim test 
(assessed between PND 56-64), and reduced social aggression in the intruder 
test (assessed between PND 66-72) (Burke et al. 2018). 

• Mouse: Exposure of male pups via lactation on PND 1-28 significantly decreased 
the total thickness of pyramidal cell layers in the hippocampus, along with 
shrinkage and degeneration of pyramidal neurons in the CA1 and CA3 
hippocampal regions on PNDs 29 and 63 (Bhaskar et al. 2017). 

Endocrine effects 

• Rat: Exposure to adult males decreased serum testosterone and luteinizing 
hormone (Tetsatsi et al. 2019). 

• Mouse: Exposure of male pups via lactation on PND 1-28 decreased serum 
testosterone levels on PND 29, but not PND 63, and increased serum 
corticosterone levels at PND 29 and 63 (Bhaskar et al. 2017). 

• Mouse: Exposure of adult males for 10 weeks decreased serum testosterone, 
testicular androgen receptor levels and aromatase activity, and inhibited 
expression of genes involved in the production of testosterone (Yuan et al. 2020). 

Female reproductive effects 

• Rat: Exposure of mature females to a pesticide formulation containing 
imidacloprid for 60 days caused ovarian damage, including decreased ovary 
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weight, interference with ovarian follicle development (variations in diameter of 
follicles at different stages of folliculogenesis), decreased number of follicles, 
increased follicular atresia, increased markers of lipid peroxidation and protein 
oxidation and decreased levels of reduced glutathione, vitamin E, catalase, 
superoxide dismutase, and glutathione peroxidase in the ovary, as well as 
decreases in serum estradiol levels (Mzid et al. 2018).  

• Rat: Exposure of females for 90 days resulted in decreased ovarian weight and 
significant patho-morphological changes in follicles, including changes in antral 
and atretic follicles, increased markers of lipid peroxidation and decreased levels 
of reduced glutathione, catalase, superoxide dismutase, and glutathione 
peroxidase in the ovary, as well as decreased serum levels of luteinizing 
hormone and progesterone and increased levels of follicle stimulating hormone 
(Kapoor et al. 2011).  

• Rat: Exposure of pregnant females from GD 7-21 resulted in decreased serum 
estradiol and progesterone levels, reduced ovarian weights and diameters, and 
reduced numbers and diameters of follicles and corpus luteum in 55-day-old 
female offspring.  Female offspring also had lower rates of successful mating, 
lower numbers of fetuses, and decreased ovarian expression of the Dax1 gene 
(Nabiuni et al. 2015, as reported in (Mikolić and Karačonji 2018). 

• Rat: Exposure of adult F0 females for 10 weeks or more and F1 females for 8 
weeks or more decreased ovarian weight (reported above under Maternal and 
Developmental effects), and increased the number of atretic follicles (Vohra and 
Khera 2016).   

Male reproductive effects 

• Rat: Effects of imidacloprid on reproduction included testicular degeneration in 
the 2 year chronic guideline study (CDPR 2006). 

• Rat: Exposure to adult males decreased sex organ weights, spermatozoa count, 
motility and viability, altered sperm morphology (increased head and tail 
abnormalities) and testis histology, increased testicular levels of lipid 
peroxidation, superoxide dismutase and catalase, and, as noted under Endocrine 
Effects, decreased serum testosterone and luteinizing hormone (Tetsatsi et al. 
2019). 

• Rat: Exposure of adult males for 28 days increased testicular markers of lipid 
peroxidation and protein oxidation, reduced testicular activity of several 
antioxidant enzymes (e.g., superoxide dismutase, catalase, glutathione 
peroxidase), and caused progressive congestion in blood vessels and mild 
edema of the interstitial spaces of the testes (Mahajan et al. 2018). 

• Rat: Exposure of adult males for 28 days decreased total epididymal sperm 
count, sperm motility, and live sperm count, increased head and tail sperm 
abnormalities, and increased histopathologic alterations in the testis and 
epididymis (e.g., reduced spermatogenesis, increased interstitial edema).  
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Exposure also increased lipid peroxidation in the testis, and decreased 
antioxidant enzyme activities (e.g., superoxide dismutase, catalase, glutathione 
peroxidase) and 3β-hydroxysteroid dehydrogenase (HSD) and 17β-HSD 
enzymatic activities, and increased gamma-glutamyl transpeptidase, lactate 
dehydrogenase-x, and sorbitol dehydrogenase activities in the testis; 
testosterone levels were also decreased in testis and plasma (Lonare et al. 
2016). 

• Rat: 90-day exposure of males, starting at 7 days of age, resulted in suppression 
of testicular function with decreased testosterone levels, epididymis weight and 
epididymal sperm concentrations; increased apoptosis of germ cells, seminal 
DNA fragmentation, lipid peroxidation, and abnormal sperm; depletion of reduced 
glutathione; and increased levels of certain fatty acids (steric, oleic, linoleic, and 
arachidonic acids) (Bal et al. 2012a; Bal et al. 2012b). 

• Rat: 90-day exposure of 8- to 9-week-old males to doses ranging up to 8 mg/kg-d 
(the reported no-observable-adverse-effect level for reproductive system effects) 
resulted in decreased serum testosterone, decreased absolute and relative 
weights of the epididymis, right cauda epididymis, and seminal vesicles, 
decreased sperm motility and epididymal sperm concentrations, increased 
apoptosis of germ cells, seminal DNA fragmentation, and abnormal sperm, 
depletion of reduced glutathione, and increased levels of certain fatty acids 
(steric, oleic, linoleic, and arachidonic acids) (Bal et al. 2012a; Bal et al. 2012b). 

• Rat: Exposure of adult males for 60 days decreased sperm quality (e.g., 
decreased sperm viability and motile sperm velocity), produced a number of 
adverse histological changes in the testis (e.g., atrophied seminiferous tubules, 
arrested spermatogenesis), and decreased serum testosterone levels (Najafi et 
al. 2010). 

• Rat: Exposure of adult males for 15 days resulted in decreases in luteinizing 
hormone, follicle stimulating hormone, testosterone, estradiol and prolactin in 
testis, decreases in sperm counts, motility and vitality, and increases in sperm 
abnormalities (Hafez et al. 2016). 

• Rabbit: Exposure of male rabbits to 1/10th the LD50 for 10-20 consecutive days 
reduced the number of Leydig cells and widened the interstitial space in the testis 
(Memon et al. 2014). 

• Mouse: Exposure for 14 or 28 days increased sperm head abnormalities, and 28-
day exposure resulted in dominant lethal mutations at the spermatogonial stage 
(Bagri et al. 2015).  

• Dog: In a chronic guideline study, testicular degeneration was observed (CDPR 
2006).   
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Mechanistic, in vitro, and other relevant data  

• Human: In an in vitro co-culture model of fetoplacental steroidogenesis, 
consisting of H295R human adrenocortical carcinoma cells with fetal 
characteristics and BeWo human choriocarcinoma cells with villous 
cytotrophoblast characteristics, imidacloprid induced CYP19 (aromatase) and 
CYP3A7 activities, and estradiol and estrone production, and decreased estriol 
production (Caron-Beaudoin et al. 2017). 

• Rat: Exposure for 14 days of neuron-enriched cultures from neonatal cerebellum 
resulted in a slight disturbance in Purkinje cell dendritic arborization, with no 
effects on neuron or glial cell morphology.  Transcriptome microarray analysis 
identified differential expression in exposed versus control cultures in 67 genes, 
including nine genes essential for neurodevelopment, which were similarly 
altered by nicotine (Kimura-Kuroda et al. 2012). 

• Mouse: Exposure of spermatozoa to 5 mM for 30 minutes had no effect on sperm 
motility or DNA fragmentation; however, use of exposed sperm prior to the in 
vitro fertilization process decreased fertilization rate and numbers of 2-cell 
embryos, increased numbers of fragmented embryos, and decreased numbers of 
morulae and blastocysts.  Exposure of a mixture of spermatozoa and oocytes 
(i.e., during the in vitro fertilization process) to 500 µM affected fertilization and 
embryonic development in vitro, decreasing the number of 2-cell embryos, 
morulae and blastocysts; exposure of naturally fertilized zygotes to 500 µM 
decreased the number of 4-cell embryos, morulae and blastocytes, while similar 
exposure of 2-cell embryos was without effect (Gu et al. 2013). 

• Pig: In vitro exposure of oocytes for 44 hours decreased the nuclear maturation 
rate, and increased the occurrence of dispersed, irregular chromosomes in 
matured (metaphase II stage) oocytes (Ishikawa et al. 2015). 

• Japanese medaka: Exposure of embryos post fertilization for 14 days to 
concentrations ranging from 0.2 to 2000 mg/L increased developmental 
anomalies at all doses tested (the percentage of total anomalies was 67% at 0.2 
mg/L and >80% at concentrations of 2 mg/L and above); anomalies included 
lordosis/scoliosis, hemorrhage, jaw/skull deformity, edema of the yolk and bones, 
tail deformities and disorganization of the retinal pigment epithelium (Vignet et al. 
2019). 

• Zebrafish: Exposure of embryos post fertilization for 5 days to concentrations 
ranging from 0.2 to 2000 mg/L resulted in a marked thickening of muscle fibers in 
the highest dose group (Vignet et al. 2019). 
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Thiamethoxam 

(CAS No. 153719-23-4)  

 

Thiamethoxam is a systemic neonicotinoid insecticide used to control sucking insects, 
such as thrips and aphids, and soil insects, such as beetles.  Thiamethoxam is used on 
a variety of crops, including cucumbers, onions, wine grapes, and cotton, and for 
structural pest control (US EPA 2020).  According to the California Department of 
Pesticide Regulation (DPR), 46,879 pounds of thiamethoxam were used in California in 
2017 (CDPR 2017). 

Thiamethoxam passed the animal data screen, underwent a preliminary toxicological 
evaluation, and is being brought to the Developmental and Reproductive Toxicant 
Identification Committee for consultation.  This is a brief overview of the relevant studies 
identified during the preliminary toxicological evaluation.  

Human epidemiologic studies 

No human studies reporting developmental and reproductive toxicity (DART)-related 
effects of thiamethoxam were identified. 

Animal studies 

Findings reported in whole animal studies examining possible DART effects of exposure 
to thiamethoxam are summarized here. 

Maternal and developmental effects  

• Rat: In a guideline developmental (teratology) study with exposure from gestation 
day (GD) 6-15, maternal body weight gain and food consumption were 
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decreased at the mid- and high doses, and a reduction in fetal body weights and 
an increase in skeletal anomalies and variations (related to delayed ossification) 
were observed at the high dose (750 mg/kg-day) (CDPR 2008). 

• Rat: In a review describing guideline reproduction studies, maternal exposure 
from GD 6 to lactation day 21 decreased pup body weight and body weight gain 
and delayed sexual maturation (delay in onset of preputial separation) in F1 
animals at the high dose (4000 ppm) (Sheets et al. 2016).  

• Rat: In a guideline developmental neurotoxicity study, dams at the high dose 
(4000 ppm; 299 mg/kg-day) exposed from GD 7 through postnatal day (PND) 22 
had reduced food consumption along with reduced maternal body weights; 
reduced body weights of high dose pups were noted from PND 1 through study 
termination at PND 63 (US EPA 2005) (CDPR 2008).  

• Rabbit: In a guideline developmental (teratology) study with exposure on GD 7-
19, reduction in maternal body weight gain at the two high dose levels was 
observed.  Dose-related increases in post implantation losses resulting from 
increased early resorptions were noted at the high dose (150 mg/kg-day), along 
with reduced mean fetal weights and increased skeletal anomalies and variations 
at the high dose (CDPR 2008). 

• Zebrafish: Exposure beginning at the embryo stage did not affect embryo survival 
within 48 hours, cause morphological alterations or delays in embryo/larvae 
development, or alter expression of the key developmental genes ntl, krox20, 
and shh (Liu et al. 2018). 

Neurodevelopmental effects  

• Rat: In a guideline developmental neurotoxicity study, maternal exposure from 
GD 7 – PND 22 had effects at the high dose (4000 ppm or 299 mg/kg-day) on 
maternal feed consumption, body weight and pup body weight (see above under 
Maternal and Developmental Effects), while no effects were observed on 
offspring relative brain weights, histopathology or functional or neurobehavioral 
parameters (as assessed by the functional observational battery, motor activity, 
acoustic startle response and learning and memory tests) at any dose (US EPA 
2005) (CDPR 2008) (Sheets et al. 2016). 

• Zebrafish: Exposure beginning at the embryo stage altered locomotor activity in 
larvae at concentrations as low as 0.1 mg/L (Liu et al. 2018). 

Male reproductive effects 

• Rat: In a two generation reproduction guideline study with exposure via diet, 
germ cell loss/disorganization with Sertoli cell vacuolation was observed in high 
dose (1500 ppm) F1 males, and higher percentages of sperm with detached 
heads were observed in three high dose males (two F0 males and one F1 male) 
(CDPR 2008). 
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• Rat: In a two generation reproduction guideline study with exposure via diet, an 
increased incidence of diffuse tubular atrophy was observed in the testes of F0 
and F1 males at the 1000 ppm but not at 2500 ppm (CDPR 2008). 

• Dog: In a 12-month chronic dietary toxicity guideline study, along with reduced 
body weight gain in high-dose (1500 ppm) males, absolute and relative testis 
weights were reduced in two of four dogs and this decrease in testis weight was 
associated with a slight increase in the incidence and severity of atrophy of 
seminiferous tubules (CDPR 2008). 

Mechanistic, in vitro, and other relevant data 

• Pig: In porcine embryos exposed in vitro, expansion and hatching of blastocysts 
was decreased, and expanded blastocysts had decreased cell proliferation, 
increased reactive oxygen species (ROS) and γH2Ax levels, altered gene 
expression of antioxidant enzymes (increased Sod1 and decreased Mnsod, 
Gpx1, Igta5, Cox2), and decreased activity of maturation-promoting factor (Nie et 
al. 2019b). 

• Cattle: In vitro exposure of bovine oocytes delayed oocyte progression to the 
metaphase I stage, blocked development at this stage, triggered disordered 
chromosomes and spindles at the metaphase II stage, impaired cleavage of 
metaphase II oocyte and inhibited development to morulae and blastocysts (Nie 
et al. 2019a).  

• Mouse: Exposure of 2-cell stage embryos for 72 h to concentrations of 10 µM 
and above decreased the number of embryos reaching the blastocyst stage and 
the average number of cells per blastocyst (Babeľová et al. 2017). 
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Parabens: 

Butyl paraben 

(Butyl p-hydroxybenzoate, butyl 4-hydroxybenzoate, CAS No. 94-26-8) 

 

Butyl paraben is a member of the class of parabens.  It has been widely used as an 
antimicrobial preservative in cosmetics and medication suspensions.  It is now found in 
more than 20,000 cosmetic products including eye shadow, facial moisturizer/treatment, 
anti-aging cream, foundation, and sunscreen.  It is also used as a preservative in some 
foods and drugs (Health Canada 2020; US FDA 2020).  

Butyl paraben passed the human and animal data screens, underwent a preliminary 
toxicological evaluation, and is being brought to the Developmental and Reproductive 
Toxicant Identification Committee for consultation.  This is a brief overview of the 
relevant studies identified during the preliminary toxicological evaluation. 

Human epidemiologic studies 

Numerous human studies reporting developmental and reproductive toxicity (DART)-
related effects associated with butyl paraben were identified in the recent literature.  A 
number of DART findings reported in epidemiologic studies published within the last 
seven years are summarized here.  The findings are organized by groups of outcomes.  

Developmental effects  

• Increased concentrations of butyl paraben in urine samples from pregnant 
women in the first trimester were associated with reduced head circumference in 
girls at birth and increased birth weight in boys (prospective cohort study) (Jamal 
et al. 2020). 

• Maternal exposure was positively associated with the child being overweight 
within the first eight years of life, with a stronger trend in girls (prospective cohort 
study) (Leppert et al. 2020). 
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Female reproductive effects 

• Exposure was associated with decreased sex hormone binding globulin (SHBG) 
in pregnant women (cross-sectional study) (Aker et al. 2019). 

• In pregnant women, exposure was associated with decreased serum levels of 
total triiodothyronine (T3) (cross-sectional study) (Aker et al. 2018). 

• Exposure was positively associated with blood glucose levels, for both the 1st 
trimester and 2nd trimester (cross-sectional study) (Bellavia et al. 2019). 

• No association of exposure and gestational diabetes mellitus (cross-sectional 
study) (Li et al. 2019). 

• Urinary butyl paraben concentrations were not associated with in vitro fertilization 
outcomes, including total and mature oocyte counts, proportion of high embryo 
quality, and rates of fertilization, implantation, clinical pregnancy, and live birth 
(prospective cohort study) (Minguez-Alarcon et al. 2016). 

• Butyl paraben concentrations were associated with shortened menstrual cycle 
length (cross-sectional study) (Nishihama et al. 2016). 

• No consistent associations of urinary butyl paraben with day-3 follicle-stimulating 
hormone, antral follicle count, or ovarian volume in women seeking fertility 
treatment (prospective cohort study) (Smith et al. 2013). 

Male reproductive effects 

• Urinary levels of butyl paraben were positively associated with sperm XY18 
disomy (cross-sectional study) (Jurewicz et al. 2017). 

• No association of urinary butyl paraben with semen volume, sperm concentration 
or sperm motility in male partners of couples seeking infertility consultation 
(cross-sectional study) (Nishihama et al. 2017).  

• Urinary levels of butyl paraben were associated with diminished sperm count and 
poor sperm motility (prospective cohort study) (Smarr et al. 2018). 

Animal studies  

Numerous whole animal studies examining possible DART effects of exposure to butyl 
paraben were identified.  Findings reported in these studies are summarized here.  

Developmental effects, prenatal exposure only 

• Rat: Exposure via gavage on gestation days (GD) 6-19 at doses up to 1,000 
mg/kg/day had no effect on developmental parameters, including embryo/fetal 
viability, fetal weight, malformations, and variations (Daston 2004). 

• Rat: Maternal treatment on GD 7 - 21 had no effect on anogenital distance in GD 
21 fetuses, decreased mRNA expression levels of estradiol receptor-beta in fetal 
ovaries and mRNA levels of the steroidogenic acute regulatory (StAR) and 
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peripheral benzodiazepine receptor (PBR) genes in female fetal adrenal glands, 
and had no effect on fetal testicular histopathology, or testosterone levels or 
production (Taxvig et al. 2008). 

• Mouse: Butyl paraben administered subcutaneously on days 1-4 of pregnancy 
did not affect litter size, the number of pups born, postnatal day (PND) 3 litter 
weights, or the number of pups surviving to PND 5 (Shaw and deCatanzaro 
2009). 

Developmental effects, prenatal and postnatal exposure 

• Rat: Perinatal exposure to butyl paraben caused deficits in social, learning and 
memory behaviors that are similar to some of the neurodevelopmental disorders 
observed in the valproic acid model of autism.  Butyl paraben also caused 
abnormal changes in levels of monoamines, amino acids and brain-derived 
neurotrophic factor (BDNF) in the brain tissues of the offspring at PND 24 (Ali 
and Elgoly 2013). 

• Rat: Exposure from GD 7 – PND 22 reduced anogenital distance in newborn 
male and female offspring, reduced ovary weights and increased mammary 
gland growth in prepubertal females, and significantly reduced sperm count at 
doses of 10 mg/kg bw/d or higher in males (Boberg et al. 2016). 

• Rat: Butyl paraben at doses of 10, 100, or 200 mg/kg from GD 12 – PND 21 did 
not show estrogenic activity and did not impair sexual development or fertility 
capacity in females (Guerra et al. 2017a). 

• Rat: Exposure from GD 12 – PND 20 adversely affected spermatogenesis 
kinetics at doses of 10 and 200 mg/kg, impaired sperm motility, and increased 
sperm head abnormalities (Guerra et al. 2017b). 

• Rat: Exposure from GD 6 – PND 20 reduced the proportion of pups born alive, 
the proportion of pups surviving to weaning, the body weights of female offspring, 
the weights of testes, seminal vesicles and prostate glands, sperm count and 
sperm motile activity in the epididymis (Kang et al. 2002). 

• Rat: Exposure via subcutaneous injection from GD 6 – PND 21 delayed testicular 
descent and preputial separation, and decreased sperm count, motility and daily 
sperm production in males.  Females were sub-fertile, with increased pre- and 
post-implantation loss (Maske et al. 2020). 

• Rat: Exposure from GD 6 – PND 21 resulted in impaired steroidogenesis and 
folliculogenesis in females (Maske et al. 2018).  

• Rat: Oral exposure to pregnant Wistar rats from GD 7 – PND 21 reduced 
anogenital distance, delayed preputial separation, reduced weights of testes, 
epididymides, and seminal vesicles, decreased serum testosterone, luteinizing 
hormone, and follicle–stimulating hormone, increased serum 17β-estradiol, and 
reduced in a dose-dependent manner epididymal cauda sperm counts and daily 
sperm production in males (Zhang et al. 2014).  
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Female reproductive effects 

• Rat: Butyl paraben caused myometrial hypertrophy in females (Vo et al. 2010). 
• Rat: Butyl paraben significantly increased uterus weight in an uterotrophic assay 

(Vo and Jeung 2009). 
• Mouse: Butyl paraben had no effect on uterine wet or dry mass in ovariectomized 

CF-1 and CD-1 mice (Shaw and deCatanzaro 2009). 

Male reproductive effects 

• Rat: Reduced weights of the testis and epididymis, reduced total epididymal 
sperm count at high dose (40,000 ppm, approximately 2500 mg/kg-day) (NTP 
2020). 

• Rat: A single oral dose of 1,000 mg/kg butyl paraben to three-week-old male rats 
caused a gradual collapse of Sertoli cell vimentin filaments and decreased actin 
staining intensity.  Spermatogenic cells became separated from the basement 
membrane and sloughed into the lumen in treated rats (Alam and Kurohmaru 
2014). 

• Rat: A single oral dose of 1,000 mg/kg butyl paraben to three-week-old male rats 
caused progressive detachment and sloughing of spermatogenic cells into the 
lumen of the seminiferous tubules at 3 h; this effect was enhanced at 6 h.  Thin 
seminiferous epithelia and wide tubular lumina were seen at 24 h.  A significant 
increase in the number of apoptotic spermatogenic cells in treated animals (Alam 
et al. 2014). 

• Rat: Repeated subcutaneous injection of butyl paraben for one complete 
spermatogenic cycle caused dose-dependent increases in prostate relative 
weights, sperm with abnormal morphology, and histopathological changes in 
sexual organs (Garcia et al. 2017). 

• Rat: Butyl paraben treatment via diet did not cause changes in organ weights, 
histopathology of reproductive tissues, sperm production, motility, morphology or 
reproductive hormone levels (Hoberman et al. 2008).  

• Rat: Treatment of 3-week-old Wistar rats decreased the absolute and relative 
weights of epididymides, the cauda epididymal sperm reserve, sperm count, and 
daily sperm production, and decreased serum testosterone levels in a dose-
dependent manner (Oishi 2001). 

• Rat: In a repeated 28-day oral toxicity study (OECD TG407 protocol) butyl 
paraben caused DNA hypermethylation in germ cells from the mitotic through 
post-meiotic stage in adult rat testes (Park et al. 2012). 

• Mouse: Treatment of 4-week-old mice for 10 weeks increased the absolute and 
relative weights of the epididymides, and decreased in a dose-dependent 
manner both round and elongated spermatid counts in stage VII-VIII 
seminiferous tubules, and serum testosterone levels (Oishi 2002). 
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Mechanistic, in vitro, and other relevant data 

• Human semen culture: Butyl paraben reduced sperm motility and viability in 
human semen samples incubated in vitro (Li et al. 2017). 

• Human adrenocortical carcinoma cell line (H295R cells): In the steroid synthesis 
assay, butyl paraben increased progesterone production and had no effect on 
testosterone or estradiol production (Taxvig et al. 2008). 

• Human: Butyl paraben activated pregnane X receptor (PXR) in a reporter gene 
assay that detects transcriptional activation (Fujino et al. 2019) 

• Human: In the MCF-7 breast cancer cell line, treatment with butyl paraben or its 
metabolite, 3-hydroxy n-butyl 4-hydroxybenzoate (3OH), induced cell 
proliferation, expression of the pro-proliferative, estrogen-inducible gene GREB1, 
and promoted estrogen receptor (ER)-dependent transcriptional activity of an 
estrogen response element (ERE) reporter gene.  Computational docking studies 
predict that both butyl paraben and 3OH can be docked within the ligand-binding 
pocket of ERα (Gonzalez et al. 2018). 

• Human: The relative binding affinities to human recombinant estrogen receptors 
alpha and beta, assessed in a cell free competitive binding assay, were: iso-
butylparaben > butyl paraben > isopropylparaben = propylparaben > 
ethylparaben (Vo et al. 2010). 

• Rat Sertoli cell culture: Butyl paraben caused an increased number and size of 
vacuoles in the cytoplasm of rat Sertoli cells cultured in vitro (Alam and 
Kurohmaru 2014). 

• Rat: Butyl paraben activated PXR and constitutive androstane receptor (CAR) in 
reporter gene assays detecting transcriptional activation (Fujino et al. 2019). 

• Rat: In vivo exposure increased Amh mRNA levels but had no effect on Foxl2 
and Kitlg mRNA levels in primordial follicles, indicating the influence of butyl 
paraben on ovarian folliculogenesis and steroidogenesis (Lee et al. 2017).  

• Rat pituitary cell line (GH3 cells): Butyl paraben had weak thyroid receptor 
agonist activity, inducing cell proliferation in the T screen assay (Taxvig et al. 
2008). 
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Isobutyl paraben 
[Isobutyl p-hydroxybenzoate, isobutyl 4-hydroxybenzoate, CAS No. 4247-02-3] 

 

Isobutyl paraben is a member of the class of parabens.  It has been used as an 
antimicrobial preservative in cosmetics and medication suspensions.  Isobutyl paraben 
is frequently used in combination with other parabens.  There are no data on the total 
quantities of this paraben in production or use (Health Canada 2020; US FDA 2020).  

Isobutyl paraben passed the animal data screen, underwent a preliminary toxicological 
evaluation, and is being brought to the Developmental and Reproductive Toxicant 
Identification Committee for consultation.  This is a brief overview of the relevant studies 
identified during the preliminary toxicological evaluation. 

Human epidemiologic studies 

No human epidemiologic studies reporting developmental and reproductive toxicity 
(DART)-related effects associated with isobutyl paraben were identified. 

Animal studies  

Findings reported in whole animal studies examining possible DART effects of exposure 
to isobutyl paraben are summarized here.  

Developmental effects  

• Rat: Exposure during gestation and lactation decreased plasma corticosterone 
concentration and increased the uterus weight in dams at weaning, and 
increased uterine sensitivity to estrogen in adult ovariectomized female offspring.  
No effects were observed on other parameters assessed, including organ 
weights (other than the uterus) in dams, ratio of male pups, anogenital distance, 
organ weights and plasma hormone concentrations in offspring, puberty, estrous 
cycle and response of organ weight (other than the uterus) and plasma hormone 
concentrations to estrogen in adult female offspring, and reproductive and 
adrenal function in adult male offspring (Kawaguchi et al. 2009b). 

https://www.google.com/url?sa=i&url=https://shop.isotope.com/productdetails.aspx?itemno%3DULM-9848-1.2&psig=AOvVaw2bHYXLO3CFKVUQBbSYZhiG&ust=1599324878083000&source=images&cd=vfe&ved=0CAIQjRxqFwoTCKjGyN_7z-sCFQAAAAAdAAAAABAJ
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• Rat: Exposure during gestation and lactation reduced epididymal sperm count 
and motility in adult male offspring (Yang et al. 2016). 

Neurodevelopmental effects 

• Rat: Exposure during gestation and lactation reduced time spent in the open 
arms of the elevated plus maze (interpreted as increased anxiety) and impaired 
performance in the passive avoidance test (impaired learning ability) in male 
offspring at 5-6 weeks of age (Kawaguchi et al. 2009a). 

• Rat: Exposure during gestation and lactation impaired social recognition in an 
intruder test in 16-week-old ovariectomized female offspring (Kawaguchi et al. 
2010).  

Reproductive effects 

• Rat: Isobutyl paraben caused myometrial hypertrophy in female rats (Vo et al. 
2010). 

• Rat: Isobutyl paraben significantly increased uterus weight in a uterotrophic 
assay (Vo and Jeung 2009) 

Mechanistic, in vitro, and other relevant data 

• Human: In the MCF-7 breast cancer cell line, treatment with isobutyl paraben or 
its metabolite, 2-hydroxy iso-butyl 4-hydroxybenzoate (abbreviated as 2OH), 
induced cell proliferation.  2OH also induced cell proliferation in a second breast 
cancer cell line, T47D.  In MCR-7 cells, isobutyl paraben and 2OH each induced 
expression of the pro-proliferative, estrogen-inducible gene GREB1, and 2OH 
promoted estrogen receptor (ER)-dependent transcriptional activity of an 
estrogen response element (ERE) reporter gene.  Computational docking studies 
predict that isobutyl paraben and its metabolite 2OH can be docked within the 
ligand-binding pocket of ERα (Gonzalez et al. 2018). 

• Rat: In pituitary cancer GH3 cells transfected with an ERE reporter gene, isobutyl 
paraben increased ERE activity and both mRNA and protein expression of 
progesterone receptor and calbindin-D9k (Kim et al. 2012).  

• Rat: Isobutyl paraben activated constitutive androstane receptor (CAR) in 
reporter gene assays detecting transcriptional activation (Fujino et al. 2019).  

• Human: The relative binding affinities to human recombinant estrogen receptors 
alpha and beta, assessed in a cell free competitive binding assay, were: iso-
butylparaben > butyl paraben > isopropylparaben = propylparaben > 
ethylparaben (Vo et al. 2010).  
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Methyl paraben 

(Methyl p-hydroxybenzoate, methyl 4-hydroxybenzoate, CAS No. 99-76-3) 

 

Methyl paraben is a member of the class of parabens.  It is an anti-fungal agent 
approved by the US Environmental Protection Agency (US EPA) as a preservative in 
pesticides, food, beverages, cosmetics, personal care products, topical preparations, 
and parenteral solutions (US EPA 2005).  According to the report by Cherian et al. 
(2020), in 2019 the US Food and Drug Administration Voluntary Cosmetic Registration 
Program listed a total of 11,739 cosmetic products containing methyl paraben, 9,347 of 
which are “leave-on” formulations (products left on skin or hair until next wash).   

Methyl paraben passed the human and animal data screens, underwent a preliminary 
toxicological evaluation, and is being brought to the Developmental and Reproductive 
Toxicant Identification Committee for consultation.  This is a brief overview of the 
relevant studies that were identified during the preliminary toxicological evaluation. 

Human epidemiologic studies 

Numerous human studies reporting developmental and reproductive toxicity (DART)-
related effects associated with methyl paraben were identified in the recent literature.  A 
number of DART findings reported in epidemiologic studies published within the last 
nine years are summarized here.  The findings are organized by groups of outcomes. 

Developmental effects 

In the studies below, developmental effects, including birth outcomes, are associated 
with prenatal exposures unless otherwise specified. 

• Methyl paraben concentrations were associated with an increase in gestational 
age (prospective cohort study) (Aker et al. 2019b). 

• Meconium methyl paraben was associated with preterm birth, decreased 
gestational age and birthweight, and child attention-deficit hyperactivity disorder 
(ADHD) at age 6-7 years (cross-sectional and prospective cohort study) (Baker 
et al. 2020). 
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• Maternal methyl paraben levels were associated with lower T helper 1 cells (Th1) 
and marginally lower T helper 2 cells (Th2) (prospective cohort study) (Berger et 
al. 2018). 

• Pregnant women in the group with methyl paraben levels above the third quartile 
had neonates with lower body weight than those with lower methyl paraben 
levels (prospective cohort study) (Chang et al. 2019). 

• One log-unit increase of maternal methyl paraben led to a marginally significant 
increase in head circumference at birth (prospective cohort study) (Jamal et al. 
2020).  

• Each 2-fold increase in average prenatal methyl paraben concentration was 
associated with lower Major Depression Inventory (MDI) scores among girls 
(prospective cohort study) (Jiang et al. 2019). 

• Higher maternal urinary levels of methyl paraben were positively associated with 
birth length in boys; no significant associations with birth length were observed in 
girls (prospective cohort study) (Wu et al. 2017). 

Female reproductive effects 

• Methyl paraben was marginally associated with decreased sex hormone binding 
globulin (SHBG) in pregnant women (cross-sectional study) (Aker et al. 2019a). 

• Meconium methyl paraben was associated with lower maternal thyroid 
stimulating hormone and T3, and increased total thyroxine (T4) (cross-sectional 
study) (Baker et al. 2020). 

• In pregnant women, urinary methyl paraben was associated with increased T3 
and marginally associated with increased T4.  Gestational age-specific 
multivariate regression analyses showed that the magnitude and direction of 
some of the observed associations were dependent on the timing of exposure 
(cross-sectional study) (Aker et al. 2018). 

• Earlier breast development, pubic hair development and menarche were 
associated with higher prenatal methyl paraben exposures (prospective cohort 
study) (Harley et al. 2019). 

• Urinary methyl paraben concentrations were not associated with IVF outcomes, 
specifically total and mature oocyte counts, proportion of high embryo quality, 
and rates of fertilization, implantation, pregnancy, and live birth (prospective 
cohort study) (Minguez-Alarcon et al. 2016). 

• The highest quartile urinary methyl paraben concentrations were associated with 
reduction in fecundity (prospective cohort study) (Smarr et al. 2017). 

• Urinary concentrations of methyl paraben in the first trimester of pregnancy were 
associated with increased gestational weight gain rate, and this association was 
stronger than those of the second or third trimesters (prospective cohort study) 
(Wen et al. 2020).  
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Male reproductive effects 

• Compared to the lowest quartile of paternal methyl paraben concentration, 
concentrations of methyl paraben in the second quartile were associated with 
decreased odds of live birth following intrauterine insemination (prospective 
cohort study) (Dodge et al. 2015).  

• No significant association of methyl paraben and sperm chromosome disomy 
(cross-sectional study) (Jurewicz et al. 2017). 

• Cord blood levels of methyl paraben were inversely associated with testosterone 
levels (cross-sectional study) (Kolatorova et al. 2018).  

• No significant associations between methyl paraben and serum hormone levels, 
semen quality parameters, or sperm DNA damage (cross-sectional study) 
(Meeker et al. 2011). 

• No significant association was found between methyl paraben and semen 
parameters (cross-sectional study) (Nishihama et al. 2017).  

• Methyl paraben was associated with diminished sperm count and several sperm 
motility parameters (prospective cohort study) (Smarr et al. 2018). 

Animal studies  

Relevant whole animal studies examining possible DART effects of exposure to methyl 
paraben were identified.  Findings reported in these studies are summarized here.  

Developmental effects 

• Zebrafish embryos: Decreased heart rate and hatching rate and defects including 
pericardial edema blood cell accumulation and bent spine (Dambal et al. 2017). 

• Zebrafish embryos: Alterations in developmental landmarks such as heart rate 
and hatching percentage (Luzeena Raja et al. 2019). 

Female reproductive effects 

• Rat: Perinatal exposure to methyl paraben induced measurable changes in both 
mammary histology (by Masson's Trichrome Stain) and transcriptome (by 
microarrays) (Gopalakrishnan et al. 2017). 

• Rat: Postnatal exposure to methyl paraben caused morphological/histological 
changes in mammary glands (Manservisi et al. 2015). 

• Rat: Methyl paraben administered to 8-week-old female rats caused increased 
diestrus phase in treated animal and increased mRNA levels of Amh, Star and 
Cyp11a1 genes in primordial follicles.  Methyl paraben also induced an increase 
in follicle-stimulating hormone (FSH) levels in serum and significantly decreased 
the total number of follicles (Lee et al. 2017).  
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• Rat: A high dose of methyl paraben (1000 mg/kg body weight/day) to prepubertal 
female rats resulted in a significant delay in the date of vaginal opening and a 
decrease in length of the estrous cycle following oral treatment from postnatal 
day 21-40 (Vo et al. 2010). 

• Gerbil: Exposure of adult female gerbils resulted in morphological changes in the 
Skene's paraurethral glands, which are the female counterpart to the male 
prostate gland, including epithelial hyperplasia, increased cell proliferation, a 
higher frequency of androgen receptor (AR)-positive cells, stromal inflammatory 
infiltration, and intraepithelial neoplasia foci (Costa et al. 2017). 

Male reproductive effects 

• Rat: Exposure of 22-day-old rats to methyl paraben in diets for 8 weeks had no 
effect on histopathology or organ weights of reproductive tissues, sperm 
production, motility, morphology or reproductive hormone levels (Hoberman et al. 
2008).  

• Rat: Dietary exposure for 8 weeks did not cause any treatment-related effects on 
the male reproductive system (Oishi 2004).  

• Gerbil: Exposure of adult male gerbils resulted in morphological changes in the 
prostate tissues, including epithelial hyperplasia, increased cell proliferation, and 
a higher frequency of androgen receptor (AR)-positive cells (Costa et al. 2017). 

Mechanistic, in vitro, and other relevant data 

• Human primary granulosa cell cultures: No effect on progesterone production or 
the expression of genes controlling steroid production (Herrera-Cogco et al. 
2020). 
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Propyl paraben 

(Propyl p-hydroxybenzoate, propyl 4-hydroxybenzoate, CAS No. 94-13-3) 

 

Propyl paraben is a member of the class of parabens.  It occurs as a natural substance 
found in many plants and some insects, and is also manufactured synthetically for use 
in cosmetics and pharmaceuticals (Health Canada 2020; US FDA 2020).  According to 
the report by Cherian et al. (2020), in 2019 the US Food and Drug Administration 
Voluntary Cosmetic Registration Program listed a total of 9,034 cosmetic products 
containing propyl paraben, 7,520 of which are leave-on formulations (products left on 
skin or hair until next wash), an increase from 7,118 products reported in 2006.  

Propyl paraben passed the human data screen, underwent a preliminary toxicological 
evaluation, and is being brought to the Developmental and Reproductive Toxicant 
Identification Committee for consultation.  This is a brief overview of the relevant studies 
identified during the preliminary toxicological evaluation. 

Human epidemiologic studies 

Numerous human studies reporting developmental and reproductive toxicity (DART)-
related effects associated with propyl parabenwere identified in the recent literature.  A 
number of DART findings reported in epidemiologic studies are summarized here, with 
an emphasis on those published within the last five years.  The findings are organized 
by groups of outcomes.  

Developmental effects  

In the studies below, developmental effects, including birth outcomes, are associated 
with prenatal exposures unless otherwise specified. 

• Maternal urinary concentrations of propyl paraben were associated with an 
increase in gestational age (prospective cohort study) (Aker et al. 2019b). 

• Maternal propyl paraben exposure was associated with decreased body length 
(prospective cohort study) (Geer et al. 2017). 
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• Earlier genital development in boys was associated with maternal propyl paraben 
exposure (prospective cohort study) (Harley et al. 2019). 

• In cord blood samples, propyl paraben levels were inversely associated with 
testosterone levels (cross-sectional study) (Kolatorova et al. 2018). 

• Significant association between propyl paraben levels in placenta and the risk of 
male genital malformations (case-control study) (Fernández et al. 2016). 

• Propyl paraben in maternal serum was associated with shorter anogenital 
distance in male infants, independent of body size and other putative 
confounders (case-control study) (Fisher et al. 2020). 

• Maternal propyl paraben exposure was associated with decreased odds of 
probable asthma in children at age seven (prospective cohort study) (Berger et 
al. 2018a). 

Female reproductive effects 

• Propyl paraben was marginally associated with decreased sex hormone binding 
globulin in pregnant women (cross-sectional study) (Aker et al. 2019a). 

• In pregnant women, urinary concentrations of propyl paraben were associated 
with decreased serum levels of free thyroxine (FT4) (cross-sectional study) (Aker 
et al. 2018). 

• In pregnant women, urinary concentrations of propyl paraben were associated 
with decreased serum levels of thyroid-stimulating hormone (prospective cohort 
study) (Berger et al. 2018b). 

• Urinary concentrations of propyl paraben were associated with decreased antral 
follicle counts and estradiol levels, and increased serum concentrations of 
follicle-stimulating hormone (FSH) (prospective cohort study) (Jurewicz et al. 
2020). 

• Non-linear associations of propyl paraben with gestational diabetes mellitus in 
women who were overweight/obese before pregnancy (cross-sectional study) (Li 
et al. 2019). 

• Urinary propyl paraben concentrations were not associated with in vitro 
fertilization (IVF) outcomes, including total and mature oocyte counts, proportion 
of high embryo quality, and fertilization rates.  No significant associations were 
found between urinary paraben concentrations and rates of implantation, clinical 
pregnancy, and live births (prospective cohort study) (Minguez-Alarcon et al. 
2016). 

• Suggestive trend but marginal association of propyl paraben exposure with lower 
antral follicle count (prospective cohort study) (Smith et al. 2013). 

• Maternal urinary levels of propyl paraben in the first trimester were associated 
with an increased first-trimester gestational weight gain rate.  This association 
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was stronger than those of the second or third trimesters and stronger among 
overweight/obese women (prospective cohort study) (Wen et al. 2020). 

Male reproductive effects 

• Positive association between urinary level of propyl paraben and disomy of 
chromosome 13 (cross-sectional study) (Jurewicz et al. 2017). 

• No associations between propyl paraben and markers of male reproductive 
health, including serum hormone levels, semen quality parameters, and sperm 
DNA damage (cross-sectional study) (Meeker et al. 2011). 

• No association between urinary propyl paraben concentrations and semen 
parameters among male partners of couples who visited a gynecology clinic for 
infertility consultation (cross-sectional study) (Nishihama et al. 2017).  

Animal studies  

Whole animal studies examining possible DART effects of exposure to propyl paraben 
were identified.  Findings reported in these studies are summarized here.  

Developmental effects 

• Mouse: Exposure on gestational days 1-4 had no impact on the number of 
implantation sites observed (Shaw and deCatanzaro 2009). 

• Zebrafish: Propyl paraben was not toxic to zebrafish embryos at concentrations 
up to 1000 µg/L (Torres et al. 2016). 

Female reproductive effects 

• Rat: Propyl paraben administered to 8-week-old females caused increased 
duration of diestrus phases, increased FSH levels in serum and decreased total 
number of ovarian follicles.  It also increased the mRNA level of Amh gene but 
had no effect on the mRNA levels of Foxl2 and Kitlg genes in primordial follicles. 
(Lee et al. 2017).  

• Rat: Exposure to propyl paraben at doses up to 1000 mg/kg-day from PND 21-40 
caused myometrial hypertrophy in females in a dose-dependent manner (Vo et 
al. 2010). 

• Rat: Exposure of females at doses up to 1000 mg/kg-day on postnatal days 4-90 
had no effect on reproductive development or function (Sivaraman et al. 2018). 
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Male reproductive effects 

• Rat: In a Hershberger bioassay, propyl paraben decreased the organ weights of 
all accessory sex organs, increased serum levels of luteinizing hormone, reduced 
serum levels of FSH, and cause histopathological changes such atrophy, 
hyalinization, and anastomosis in androgenic tissues (Ozdemir et al. 2018). 
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Per- and polyfluorinated substances (PFASs): 

Perfluorodecanoic acid (PFDA) 

(Nonadecafluorodecanoic acid, CAS No. 335-76-2) 

  

PFDA is a perfluorinated organic compound with surfactant properties, and a member of 
a large group of substances collectively called per- and polyfluorinated substances 
(PFASs).  PFASs are commonly used to make products resistant to stains, grease, soil 
and water, and are used in various industries.  PFASs are global pollutants of air, water, 
soil and wildlife, and are very persistent in the environment. 

Human biomonitoring studies indicate that exposure to PFDA is widespread.  For 
example, Table 4 below summarizes data on serum concentrations of PFDA (geometric 
mean and 95% confidence interval [CI]) measured in studies conducted by the 
Biomonitoring California Program between 2010 and 2018 (Biomonitoring California 
2020).  
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Table 4.  PFDA serum concentrations (ng/ml) in studies of California residents.  
Data from Biomonitoring California (https://biomonitoring.ca.gov/) (Biomonitoring 
California 2020). 

Project 
Sample 

Year 

Geometric 
mean 

(ng/ml) 

95% 
Lower 

CI 

95% 
Upper 

CI N 
Detection 
Frequency 

California 
Teachers Study 
(CTS) 

2011 0.22 0.21 0.23 1759 94.70% 

Firefighter 
Occupational 
Exposures (FOX) 
Project 

2010 to 
2011 

0.899 0.783 1.03 101 100% 

Measuring 
Analytes in 
Maternal Archived 
Samples (MAMAS) 

2012 to 
2015 

0.198 0.174 0.226 200 83% 

Biomonitoring 
Exposures Study 
(BEST) - 1.Pilot 

2011 to 
2012 

0.245 0.216 0.278 110 100% 

Biomonitoring 
Exposures Study 
(BEST) - 
2.Expanded 

2013 0.188 0.173 0.205 337 82.50% 

Asian/Pacific 
Islander 
Community 
Exposures (ACE) 
Project - ACE 1 

2016 0.477 0.406 0.559 96 80.20% 

Asian/Pacific 
Islander 
Community 
Exposures (ACE) 
Project - ACE 2 

2017 0.559 0.49 0.636 99 87.90% 

California 
Regional Exposure 
Study, Los 
Angeles County 
(CARE-LA) 

2018 0.0967 0.0894 0.105 425 69.20% 
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Reports from other human biomonitoring studies of PFDA include: 

• Serum concentration level (μg/L; geometric mean and 95% CI) reported by the 
National Health and Nutrition Examination Survey (NHANES) in 2009 to 2010 for 
males aged 20 years or older was 0.30 (0.28, 0.34) (Dobraca et al. 2015).  

• The unadjusted geometric mean and 95% CI for PFDA serum levels (ng/mL) in 
US children aged 3–11 years, from data reported by NHANES for 2013 to 2014, 
was 0.09 (0.08 − 0.1) (Jain 2018). 

• PFDA was detected in the serum of 68% of mothers in the Northern California 
CHARGE (CHildhood Autism Risk from Genetics and Environment) case-control 
study (serum collected 2009 – 2016) (Kim et al. 2020).   

PFDA passed the human data screen, underwent a preliminary toxicological evaluation, 
and is being brought to the Developmental and Reproductive Toxicant Identification 
Committee for consultation.  This is a brief overview of relevant studies identified during 
the preliminary toxicological evaluation.  

Human epidemiologic studies 

Numerous human studies reporting developmental and reproductive toxicity (DART)-
related effects associated with PFDA were identified in the recent literature.  DART 
findings reported in epidemiologic studies published within the last six years are 
summarized here.  The findings are organized by groups of outcomes.   

Gestation duration 

• Increased risk of preterm birth (the Danish national birth cohort study) (Meng et 
al. 2018).  

Indicators of fetal growth 

• Inversely associated with birth weight (prospective cohort study) (Kashino et al. 
2020; Wang et al. 2016); (longitudinal cohort) (Gyllenhammar et al. 2018; 
Wikström et al. 2020); and (retrospective cohort study) (Kwon et al. 2016). 

• Elevated odds of small for gestational age; with lower average childhood height 
z-score in girls (prospective study) (Wang et al. 2016).  

• Associated with lower birth weight for gestational age, and small for gestational 
age at birth (Swedish longitudinal cohort) (Wikström et al. 2020). 

Neurodevelopmental effects 

• Prenatal levels of 19 PFASs were measured in maternal blood at week 17 of 
gestation.  No associations with attention-deficit/hyperactivity disorder symptoms, 
language skills or intelligence quotient (IQ).  Positive associations between 
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verbal working memory and increasing quintiles of PFDA (prospective study) 
(Skogheim et al. 2020). 

• PFDA was measured in maternal serum and in serum from children at ages 5 
and 7 years.  No associations between prenatal PFAS (including PFDA) 
concentrations and strengths and difficulties questionnaire (SDQ) scores, while a 
two-fold increase in 5 year-old serum PFDA concentrations was associated with 
increases in total SDQ (birth cohort in the Faroe Islands study) (Oulhote et al. 
2016).  

• PFDA maternal plasma concentration measured once between GWs 12 to 16 
was associated with increased risk of developmental problems in personal-social 
skills (birth cohort) (Niu et al. 2019). 

Anogenital distance, prenatal exposure 

• Inversely associated with anogenital distance at birth (prospective cohort study) 
(Tian et al. 2019). 

• Associated with a decreased anogenital distance in three months-old girls (p-
value for trend <0.05) after adjusting for age and weight-for-age standard 
deviation score (Odense child cohort) (Lind et al. 2017). 

Endocrine effects 

• PFAS levels and three thyroid hormones (THs) were measured in cord blood.  
Thyroid stimulating hormone (TSH) levels decreased with increasing 
concentrations of PFDA (cross-sectional study) (Aimuzi et al. 2019). 

• Levels of PFDA and THs were measured in maternal blood samples collected 
between gestational weeks (GWs) 5 and 19.  Higher PFDA levels were 
associated with higher TSH levels before GW 10 and with lower TSH levels at or 
after GW 10.  PFDA was correlated with lower free thyroxine levels before GW 8 
and high free thyoxine levels thereafter (cross-sectional study) (Inoue et al. 
2019). 

• PFDA was measured in the third trimester and THs levels in cord serum in 116 
neonates.  PFDA was associated with lower cord total triiodothyronine (T3) 
(prospective birth cohort study) (Wang et al. 2014). 

• PFDA and THs were measured in serum from pregnant women in their second 
trimester and 3 days and 6 weeks after delivery (Berg et al. 2015) and in 
addition, TSH concentration was analyzed in newborns in heel-prick samples at 
the two visits after delivery (Berg et al. 2017).  PFDA was inversely associated 
with mean maternal T3 and free T3 (prospective study) (Berg et al. 2015; Berg et 
al. 2017).  

• Thyroid hormones were analyzed in paired maternal and cord serum samples 
collected around delivery.  Maternal PFDA negatively correlates with maternal 
TSH (cross sectional study in Beijing) (Yang et al. 2016).  
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• PFDA in cord blood was associated with higher placental aromatase levels 
(Chinese prospective birth cohort) (Yao et al. 2019).  

• Maternal serum PFDA was measured once between gestational weeks 10 and 
15.  Serum concentrations of dehydroepiandrosterone (DHEA), 
dehydroepiandrosterone-sulfate, androstenedione, 17-hydroxyprogesterone, 
testosterone, luteinizing hormone and follicle stimulating hormone were 
measured in children (44% girls; 56% boys) at a mean age of 3.9 months.  A two-
fold increase in maternal PFDA concentration was associated with a 19.6% 
reduction in DHEA in daughters (prospective Odense child cohort) (Jensen et al. 
2020). 

Female reproductive effects 

• Associated with longer menstrual cycles (prospective pregnancy cohort study) 
(Lum et al. 2017). 

• Associated with a greater risk of miscarriage (nested case-control in the Odense 
child cohort study) (Jensen et al. 2015). 

Male reproductive effects 

• Associated with lower testosterone levels (cross-sectional study) (Zhou et al. 
2016). 

Other DART effects 

Puberty  

• Prenatal exposure to PFDA was associated with a lower mean age of puberty 
onset in girls, and a higher mean age of puberty onset in boys (puberty cohort, 
nested within the Danish National birth cohort) (Ernst et al. 2019). 

Atopic dermatitis 

• The highest quartile of cord plasma (at parturition) of PFDA was associated with 
with atopic dermatitis (prospective birth cohort study) (Chen et al. 2018). 

Epigenetic 

• PFDA, telomere length at birth and reactive oxygen species were measured in 
umbilical cord blood of 581 newborns.  PFDA was associated with shorter 
telomere length and elevated reactive oxygen species levels (prospective cohort 
study) (Liu et al. 2018). 
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Animal studies 

A limited number of whole animal studies examining possible DART effects of exposure 
to PFDA were identified.  Findings reported in these studies are summarized here.  

Developmental effects 

• Mice: Decreased fetal viability and reduced fetal body weight (Harris and 
Birnbaum 1989).  

Endocrine effects 

• Rats: Exposure of sexually mature males resulted in decreased plasma 
testosterone and 5α-dihydrotestosterone in males.  Secondary to the decrease in 
plasma androgen concentrations were dose-related decreases in the weights 
and epithelial heights of accessory sex organs.  Plasma luteinizing hormone 
concentrations were not significantly altered by PFDA treatment (Bookstaff et al. 
1990). 

• Zebrafish: Fertilized zebrafish eggs were exposed to PFDA until hatching.  
Steroid hormones were measured in whole blood.  There was an increased ratio 
of estradiol to testosterone and estradiol to 11-ketotestosterone in males (Jo et 
al. 2014). 

Mechanistic, in vitro, and other relevant data 

• Mouse: In hepatocytes exposed in vitro, PFDA increased DNA strand breaks and 
DNA oxidative damage, as assessed by the comet assay (Xu et al. 2019). 

• Pig: Negatively impacted oocyte viability and maturation in vitro; higher levels of 
intracellular calcium relative to control oocytes (Domínguez et al. 2019). 

• Rat: In males exposed in vivo it was reported that PFDA displaced radiolabeled 
thyroxine from albumin with an affinity similar to thyroxine (Gutshall et al. 1989). 

• Chinese hamster ovary cell line:  Concentration-dependent androgen receptor 
antagonist inhibitory concentration [IC]85 = 2.4x10-5 M  (Kjeldsen and Bonefeld-
Jørgensen 2013). 

• Human choriocarcinoma, JEG-3 cell line: Slight decrease in aromatase activity at 
10-5 M (Kjeldsen and Bonefeld-Jørgensen 2013). 
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Perfluorohexanesulfonic acid (PFHxS) 

(Tridecafluorohexane-1-sulfonic acid, CAS No. 355-46-4)  

 

PFHxS is a perfluorinated organic compound with surfactant properties, and a member 
of a large group of substances collectively called per- and polyfluorinated substances 
(PFASs).  PFASs are commonly used to make products resistant to stains, grease, soil 
and water, and are used in various industries.  PFASs are global pollutants of air, water, 
soil and wildlife, and are very persistent in the environment. 

Human biomonitoring studies indicate that exposure to PFHxS is widespread.  For 
example, Table 5 below summarizes data on serum concentrations of PFHxS 
(geometric mean and 95% confidence interval [CI]) measured in studies conducted by 
the Biomonitoring California Program between 2010 and 2018 (Biomonitoring California 
2020). 
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Table 5.  PFHxS serum concentration (ng/ml) in studies in California residents.  
Data from Biomonitoring California (https://biomonitoring.ca.gov/) (Biomonitoring 
California 2020). 

Project 
Sample 

Year 

Geometric 
mean 

(ng/ml) 

95% 
Lower 

CI 

95% 
Upper 

CI N 
Detection 
Frequency 

California 
Teachers Study 
(CTS) 

2011 1.62 1.56 1.68 1759 99.90% 

Firefighter 
Occupational 
Exposures (FOX) 
Project 

2010 to 
2011 

2.26 2 2.54 101 100% 

Measuring 
Analytes in 
Maternal Archived 
Samples (MAMAS) 

2012 to 
2015 

0.904 0.818 0.998 200 100% 

Biomonitoring 
Exposures Study 
(BEST) - 1.Pilot 

2011 to 
2012 

1.43 1.19 1.73 110 99.10% 

 

 Biomonitoring 
Exposures Study 
(BEST) - 
2.Expanded 

2013 1.03 0.937 1.13 337 99.10% 

Asian/Pacific 
Islander 
Community 
Exposures (ACE) 
Project - ACE 1 

2016 0.767 0.66 0.891 96 100% 

Asian/Pacific 
Islander 
Community 
Exposures (ACE) 
Project - ACE 2 

2017 1.29 1.14 1.45 99 100% 

California Regional 
Exposure Study, 
Los Angeles 
County (CARE-LA) 

2018 0.613 0.559 0.672 425 98.80% 

https://biomonitoring.ca.gov/
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Reports from other human biomonitoring studies of PFHxS include: 

• Serum concentration level (μg/L; geometric mean and 95% CI) reported by the 
National Health and Nutrition Examination Survey (NHANES) in 2009 to 2010 for 
males aged 20 years or older was 2.15 (1.93, 2.40) (Dobraca et al. 2015).  

• The unadjusted geometric mean and 95% CI for PFHxS serum levels (ng/mL) in 
US children aged 3–11 years, from data reported by NHANES for 2013 to 2014, 
was 0.84 ng/mL (0.76 − 0.94) (Jain 2018).  

• PFHxS was detected in the serum of 98% of mothers in the Northern California 
CHARGE (Childhood Autism Risk from Genetics and Environment) case-control 
study (serum collected 2009 – 2016) (Kim et al. 2020). 

PFHxS passed the human data screen, underwent a preliminary toxicological 
evaluation, and is being brought to the Developmental and Reproductive Toxicant 
Identification Committee for consultation.  This is a brief overview of the relevant studies 
published within the last seven to eight years that were identified during the preliminary 
toxicological evaluation.  

Human epidemiologic studies 

Numerous human studies reporting developmental and reproductive toxicity (DART)-
related effects associated with PFHxS were identified in the recent literature.  DART 
findings reported in epidemiologic studies published within the last eight years are 
summarized here.  The findings are organized by groups of outcomes. 

Indicators of fetal growth 

• Association between increasing PFHxS concentration quartiles and decreased 
ponderal index at birth, but not birth weight or height (retrospective cohort study) 
(Alkhalawi et al. 2016). 

• Increased odds of being <95% of optimal birth weight (cross sectional study) 
(Callan et al. 2016). 

• Decreased birth length, but increased postnatal head circumference (average 
age at measurement: 19 months) (p value for trend=0.04) (cross sectional study) 
(Cao et al. 2018). 

• Decreased birth weight (cohort study) (Hamm et al. 2010).  
• No association with fetal growth in any trimester of pregnancy for the combined 

study population (three cohorts study) (Costa et al. 2019).  
• No statistically significant associations with birth weight, birth length or ponderal 

index.  In male infants a positive correlation with birth length was reported (cross 
sectional study) (Shi et al. 2017).  
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Neurodevelopmental effects 

• Maternal plasma PFHxS, measured at gestation week (GW) 15, and child 
behavior analysis at 5 to 9 years of age.  PFHxS was associated with higher 
Strength and Difficulties Questionnaire (SDQ)-total score (more problem 
behavior) in the Greenland cohort; no association observed in the Ukraine cohort 
(Birth cohorts from Greenland and Ukraine) (Høyer et al. 2018). 

• Prenatal levels of 19 PFASs were measured in maternal blood at week 17 of 
gestation.  Negative association between PFHxS and nonverbal working 
memory.  No association with attention-deficit/hyperactivity disorder symptoms, 
language skills or intelligence quotient (IQ) (prospective study) (Skogheim et al. 
2020). 

Anogenital distance, prenatal exposure 

• Maternal serum PFHxS at GW 5 to 12 was associated with decreased anogenital 
distance in girls at median age 3.5 months (p-trend<0.05) (Odense child cohort) 
(Lind et al. 2017). 

Endocrine effects 

• PFHxS levels and thyroid hormones were measured in maternal blood samples 
collected between GW 5 and 19.  Higher PFHxS levels were associated with 
higher thyroid stimulating hormone levels before GW 10 (cross-sectional study) 
(Inoue et al. 2019).  

• Maternal serum was collected around GW 11; higher PFHxS levels were 
associated with increased fasting glucose, fasting insulin and insulin resistance 
(based on a homeostatic assessment model) (prospective Odense child cohort) 
(Jensen et al. 2018). 

• Positive association between cord blood PFHxS and cord blood estradiol levels.  
Higher cord blood PFHxS levels associated with higher levels of placental 
steroidogenic enzymes such as aromatase and 3β- and 17β-hydroxysteroid 
dehydrogenase.  These associations were more pronounced in females than 
males (Chinese prospective birth cohort) (Yao et al. 2019). 

• In patients with primary ovarian insufficiency, plasma levels of PFHxS were 
positively associated with plasma levels of follicle stimulating hormone and 
negatively associated with plasma levels of estradiol (case-control study) (Zhang 
et al. 2018). 
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Female reproductive effects 

• First trimester plasma PFHxS was considered as a surrogate of preconception 
exposure.  PFHxS was associated with a reduction in fecundability (cohort study) 
(Velez et al. 2015).  

• Plasma PFHxS levels were positively associated with primary ovarian 
insufficiency (case-control study) (Zhang et al. 2018). 

• Plasma PFHxS levels were associated with increased odds of self-reported 
history of irregular menstrual cycle and self-reported history of menorrhagia 
(Shanghai birth cohort study) (Zhou et al. 2017). 

• Serum PFHxS levels were not associated with time to pregnancy in any region 
studied (cross-sectional multi region study from Greenland, Poland, and Ukraine) 
(Jorgensen et al. 2014). 

• A non-significantly increased association of plasma PFHxS levels with 
miscarriage (OR and CI) 0.9 (0.7, 1.3) (case-control study) (Liew et al. 2020). 

Male reproductive effects 

• Increased serum PFHxS was associated with a 35% lower proportion of 
morphologically normal sperm (multi-region study from Greenland, Poland and 
Ukraine) (Toft et al. 2012). 

Other DART effects 

Atopic dermatitis 

• The highest quartile of PFHxS in cord blood was associated with atopic 
dermatitis (prospective birth cohort study) (Chen et al. 2018). 

Germ cell tumors 

• Maternal PFHxS levels were significantly associated with pediatric germ cell 
tumors (case-control study) (Lin et al. 2020).  

Metabolic effects 

• Positive associations between maternal plasma PFHxS and increased 
triglycerides in the child at age 4.  Prenatal PFAS concentrations were not 
associated with individual outcomes (cardiometabolic risk score and z-scores for 
weight gain, body mass index; waist circumference, blood pressure, high-density 
lipoprotein cholesterol; low-density lipoprotein cholesterol, total cholesterol, and 
triglycerides) or with the combined cardiometabolic-risk score (Spanish INMA 
birth cohort study) (Manzano-Salgado et al. 2017).  

• Prenatal PFHxS serum samples were not associated with adiposity at 8 years of 
age (prospective cohort Study) (Braun et al. 2016).  



 

Chemical for 144 Office of Environmental Health 
DARTIC Consultation:  Hazard Assessment 
PFHxS  October 2020 

• Maternal serum PFHxS levels were not associated with percent total body fat in 
girls (longitudinal study) (Hartman et al. 2017). 

Puberty 

• Prenatal exposure to PFHxS was associated with a lower mean age of puberty 
onset in girls and boys (puberty cohort, nested within the Danish national birth 
cohort) (Ernst et al. 2019). 

Animal studies  

Findings reported in whole animal studies examining possible DART effects of 
exposure to PFHxS published within the last seven years are summarized here.   

Developmental effects 

Developmental effects are associated with in utero exposures unless otherwise 
specified  

• Mouse: Equivocal decrease in live litter size.  Pup-born-to-implant ratio was 
unaffected. There were no treatment-related effects on postnatal survival, 
development, or onset of preputial separation or vaginal opening in F1 mice 
(Chang et al. 2018). 

• Rat: Decreased male pup birth weight, low thyroxine levels in both dams and 
offspring (Ramhoj et al. 2018). 

• Zebrafish: Morphometric effects in the larvae, specifically increased length and 
yolk sac area (Annunziato et al. 2019). 

Neurodevelopmental effects  

• Mouse: Alteration in neuroproteins involved in normal brain development after 
PFHxS exposure on postnatal day 10 (Lee and Viberg 2013). 

• Zebrafish: At 14 days post-fertilization, treatment with PFHxS was associated 
with decreased activity in a behavioral assay (e.g., decreased distance traveled, 
and decreased travel through the center of the test “arena”) (Annunziato et al. 
2019). 

Mechanistic, in vitro, and other relevant data 

• Chinese hamster ovary cell line: Concentration-dependent androgen receptor 
antagonism, starting at 5x10-5M (Kjeldsen and Bonefeld-Jørgensen 2013). 
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Perfluorononanoic acid (PFNA) 

(Heptadecafluorononanoic acid, CAS No. 375-95-1)  

 

PFNA is a perfluorinated organic compound with surfactant properties, and a member of 
a large group of substances collectively called per- and polyfluorinated substances 
(PFASs).  PFASs are commonly used to make products resistant to stains, grease, soil 
and water, and are used in various industries.  PFASs are global pollutants of air, water, 
soil and wildlife, and are very persistent in the environment.  

Human biomonitoring studies indicate that exposure to PFNA is widespread.  For 
example, Table 6 below summarizes data on serum concentrations of PFNA (geometric 
mean and 95% confidence interval [CI]) measured in studies conducted by the 
Biomonitoring California Program between 2010 and 2018 (Biomonitoring California 
2020).  
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Table 6.  PFNA serum concentration (ng/ml) in studies of California residents.  
Data from Biomonitoring California (https://biomonitoring.ca.gov/) (Biomonitoring 
California 2020). 

Project Sample 
Year 

Geometric 
mean 

(ng/ml) 

95% 
Lower 

CI 

95% 
Upper 

CI 

N Detection 
Frequency 

Maternal and Infant 
Environmental 
Exposure Project 
(MIEEP) 

2010 to 
2011 

0.733 0.621 0.865 77 Not reported 

California Teachers 
Study (CTS) 

2011 0.92 0.89 0.95 1719 99.70% 

Firefighter 
Occupational 
Exposures (FOX) 
Project 

2010 to 
2011 

1.15 1.06 1.25 101 100% 

Measuring Analytes in 
Maternal Archived 
Samples (MAMAS) 

2012 to 
2015 

0.647 0.596 0.703 200 100% 

Biomonitoring 
Exposures Study 
(BEST) - 1.Pilot 

2011 to 
2012 

0.994 0.92 1.07 110 100% 

Biomonitoring 
Exposures Study 
(BEST) - 2.Expanded 

2013 0.787 0.726 0.853 337 99.10% 

Asian/Pacific Islander 
Community 
Exposures (ACE) 
Project - ACE 1 

2016 0.987 0.87 1.12 96 99% 

Asian/Pacific Islander 
Community 
Exposures (ACE) 
Project - ACE 2 

2017 1.1 0.988 1.22 99 99% 

California Regional 
Exposure Study, Los 
Angeles County 
(CARE-LA) 

2018 0.3 0.278 0.323 425 97.20% 



 

Chemical for 150 Office of Environmental Health 
DARTIC Consultation:       Hazard Assessment 
PFNA  October 2020 

Reports from other human biomonitoring studies of PFNA include: 

• Serum concentration level (μg/L; geometric mean and 95% CI) reported by the 
National Health and Nutrition Examination Survey (NHANES) in 2009 to 2010 for 
males aged 20 years or older was 1.40 (1.20, 1.63) (Dobraca et al. 2015). 

• The unadjusted geometric mean and 95% CI for PFNA (ng/mL) in US children 
aged 3–11 years, from data reported by NHANES for 2013 to 2014, was 0.79 
(0.68−0.93) (Jain 2018).  

• PFNA was detected in the serum of 95% of mothers in the Northern California 
CHARGE (CHildhood Autism Risk from Genetics and Environment) case-control 
study (serum collected 2009 – 2016) (Kim et al. 2020).   

PFNA passed the human data screen, underwent a preliminary toxicological evaluation, 
and is being brought to the Developmental and Reproductive Toxicant Identification 
Committee for consultation.  This is a brief overview of the relevant studies identified 
during the preliminary toxicological evaluation. 

Human epidemiologic studies 

Numerous human studies reporting developmental and reproductive toxicity (DART)-
related effects associated with PFNA were identified in the recent literature.  DART 
findings reported in epidemiologic studies published within the last six years are 
summarized here.  The findings are organized by groups of outcomes.   

Gestation duration 

• Increased risk of preterm birth (the Danish national birth cohort study) (Meng et 
al. 2018).  

Indicators of fetal growth  

• Inverse association with birth weight (longitudinal cohort) (Gyllenhammar et al. 
2018). 

• No association with fetal biometry.  Negative association (among smokers) with 
femur length and estimated fetal weight (three cohorts study) (Costa et al. 2019). 

• Inverse associations with birth weight and birth length (prospective birth cohort 
study) (Kashino et al. 2020) and (retrospective cohort study) (Kwon et al. 2016). 

• Maternal serum PFNA level was inversely associated with birth weight in girls. 
For height z-scores in boys, a significant interaction was reported with height at 
ages 8 and 11 years, but not with size of boys at birth (prospective study) (Wang 
et al. 2016).  

• Associated in girls with lower birth weight for gestational age, and small for 
gestational age at birth (longitudinal cohort) (Wikström et al. 2020). 
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Neurodevelopmental effects 

• PFNA was measured in maternal serum and in serum from children at ages 5 
and 7 years.  No associations between prenatal PFNA concentrations and 
strengths and difficulties questionnaire (SDQ) scores, while a two-fold increase in 
5 year-old serum PFNA concentrations was associated with increases in total 
SDQ (birth cohort in the Faroe Islands study) (Oulhote et al. 2016). 

• Maternal plasma PFNA levels measured at gestational week (GW) 15, and child 
behavior analysis at 5 to 9 years of age.  PFNA was associated with higher SDQ-
total scores (indicating more behavioral problems) in the Greenland cohort and in 
the combined analysis (Greenland and Ukraine cohorts), and no association with 
scores in the Ukraine cohort.  Increased odds ratio for hyperactivity for one 
natural log-unit increase in prenatal PFNA (birth cohorts) (Høyer et al. 2018). 

• PFNA measured in cord blood was inversely associated with inattention and 
oppositional defiant disorder and hyperactivity/inattention at 7 years of age 
(early-life cohort) (Lien et al. 2016). 

• PFNA maternal plasma concentration measured once between GWs 12 to 16 
was associated with increased risk of developmental problems in personal-social 
skills (birth cohort) (Niu et al. 2019). 

• Prenatal levels of 19 PFASs were measured in maternal blood at week 17 of 
gestation.  No associations with attention-deficit/hyperactivity disorder symptoms, 
language skills or intelligence quotient (IQ).  Negative associations with 
nonverbal working memory, and positive associations with verbal working 
memory (prospective study) (Skogheim et al. 2020). 

• PFNA was analyzed in maternal serum samples collected during the third 
trimester of pregnancy.  Higher PFNA levels were associated with lower verbal 
IQ (maternal and Infant cohort study) (Wang et al. 2015). 

Anogenital distance, prenatal exposure 

• Associated with a decreased anogenital distance in three months-old girls (p-
value for trend<0.05) after adjusting for age and weight-for-age standard 
deviation score (Odense child cohort) (Lind et al. 2017). 

Endocrine effects 

• PFNA in cord blood was associated with higher placental aromatase levels 
(prospective birth cohort) (Yao et al. 2019).  

• PFNA levels and three thyroid hormones (THs) were measured in cord blood.  
Thyroid stimulating hormone (TSH) levels decreased with increasing 
concentrations of PFNA (cross-sectional study) (Aimuzi et al. 2019). 
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• PFNA was measured in the third trimester and THs levels in cord serum in 116 
neonates.  PFNA was associated with lower free and total thyroxine levels 
(prospective birth cohort study) (Wang et al. 2014). 

• Associated with lower testosterone levels (cross-sectional study) (Zhou et al. 
2016) 

Female reproductive effects 

• PFNA serum levels in pregnancy were associated with greater risk of miscarriage 
(nested case-control in the Odense child cohort study) (Jensen et al. 2015).  

• Serum PFNA levels were associated with longer time to pregnancy in the pooled 
sample and specifically in women from Greenland.  Increased odd ratios for 
infertility in the pooled sample and in women from Greenland (cohort study) 
(Jorgensen et al. 2014). 

• Lower probability of pregnancy for women in second versus first tertile of PFNA 
(prospective pregnancy cohort study) (Lum et al. 2017). 

• Plasma PFNA levels were associated with increased odds of self-reported history 
of irregular menstrual cycle, and negatively associated with self-reported history 
of menorrhagia (Shanghai birth cohort study) (Zhou et al. 2017).  

Other DART effects 

Puberty 

• Prenatal exposure to PFNA was associated with a lower mean age of puberty 
onset in girls, and higher mean age of puberty onset in boys (Puberty cohort, 
nested within the Danish National Birth Cohort) (Ernst et al. 2019). 

Respiratory system effects 

• Maternal serum PFNA levels were associated with self-reported asthma in child 
at 5 years of age (child cohort) (Beck et al. 2019). 

• Cord serum PFNA was positively associated with the number of lower respiratory 
tract infection episodes from 0 to 10 years of age (prospective birth cohort study) 
(Impinen et al. 2018). 

Metabolic effects 

• Maternal serum PFNA was associated with higher fasting insulin after adjusting 
for age, parity, educational level and pre-pregnancy body mass index in women 
with high risk for gestational diabetes (prospective cohort) (Jensen et al. 2018). 

• Positive association between maternal plasma prenatal PFNA and the combined 
cardiometabolic-risk score of the child (birth cohort study) (Manzano-Salgado et 
al. 2017). 
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• Maternal PFNA serum levles were not associated with adiposity of the child at 8 
years of age (prospective cohort) (Braun et al. 2016)  

• Maternal PFNA serum levels were not associated with percent total body fat in 9 
year-old girls (longitudinal study) (Hartman et al. 2017). 

Animal studies  

Two whole animal studies examining possible DART effects of exposure to PFNA were 
identified.  The findings are summarized here.  

Developmental and neurodevelopmental effects 

• Mouse: Pups exposed in utero were born alive; however, 80% of pups in the high 
dose group died within the first 10 days of life, and surviving pups exhibited dose-
dependent delays in eye opening and onset of puberty (Das et al. 2015). 

• Zebrafish: Embryos were treated for the first five days post fertilization.  When 
assessed at six months post fertilization, PFNA was not associated with any 
significant change in total body length or weight.  In terms of behavior, PFNA was 
associated in males with a reduction in total distance traveled and time of 
immobility; increases in thigmotaxis behavior (a tendency to remain close to the 
tank walls, indicating anxiety) and aggressive attacks, and preference for the 
bright section of the tank.  PFNA also decreased gene expression of two organic 
anion transporting polypeptides in both sexes and increased expression of 
growth factor genes in males (Jantzen et al. 2016). 

Mechanistic, in vitro, and other relevant data 

• Rat: Primary cultured Sertoli cells exposed in vitro developed vacuoles in the 
cytoplasm (Feng et al. 2010). 

• Bovine: Oocytes exposed in vitro during maturation had larger lipid droplets 
during oocyte maturation and in the blastocyst stage had accumulation of very 
large lipid droplets and a lower proportion of small lipid droplets (Hallberg et al. 
2019). 

• Chinese hamster ovary cell line: Concentration-dependent androgen receptor 
antagonism (Kjeldsen and Bonefeld-Jørgensen 2013). 
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Perfluoroundecanoic acid (PFUnDA) 

(Henicosafluoroundecanoic acid, CAS No. 2058-94-8)  

 

PFUnDA is a perfluorinated organic compound with surfactant properties, and a 
member of a large group of substances collectively called per- and polyfluorinated 
substances (PFASs).  PFASs are commonly used to make products resistant to stains, 
grease, soil and water, and are used in various industries.  PFASs are global pollutants 
of air, water, soil and wildlife, and are very persistent in the environment. 

Human biomonitoring studies indicate that exposure to PFUnDA is widespread.  For 
example, Table 7 below summarizes data on serum concentrations of PFUnDA 
(geometric mean and 95% confidence interval [CI]) measured in studies conducted by 
the Biomonitoring California Program between 2010 and 2018 (Biomonitoring California 
2020).  
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Table 7.  PFUnDA serum concentrations (ng/ml) in studies of California residents.  
Data from Biomonitoring California (https://biomonitoring.ca.gov/) (Biomonitoring 
California 2020). 

Project 
Sample 

Year 

Geometric 
mean 

(ng/ml) 

95% 
Lower 

CI 

95% 
Upper 

CI N 
Detection 
Frequency 

Maternal and Infant 
Environmental Exposure 
Project (MIEEP) 

2010 to 
2011 

0.131 0.101 0.17 77 Not 
reported 

California Teachers Study 
(CTS) 

2011 0.13 0.12 0.13 1759 96.80% 

Firefighter Occupational 
Exposures (FOX) Project 

2010 to 
2011 

0.24 0.21 0.27 101 100% 

Measuring Analytes in 
Maternal Archived Samples 
(MAMAS) 

2012 to 
2015 

0.124 0.107 0.144 200 78% 

Biomonitoring Exposures 
Study (BEST) - 1.Pilot 

2011 to 
2012 

0.128 0.111 0.148 110 100% 

Biomonitoring Exposures 
Study (BEST) - 2.Expanded 

2013 0.106 0.0958 0.117 337 83.40% 

Asian/Pacific Islander 
Community Exposures 
(ACE) Project - ACE 1 

2016 0.398 0.348 0.455 96 100% 

Asian/Pacific Islander 
Community Exposures 
(ACE) Project - ACE 2 

2017 0.453 0.391 0.525 99 98% 

California Regional 
Exposure Study, Los 
Angeles County (CARE-LA) 

2018 0.0829 0.0756 0.0909 425 82.40% 

Reports from other human biomonitoring studies of PFUnDA include: 

• Serum concentration level (μg/L; geometric mean and 95%CI) reported by the 
National Health and Nutrition Examination Survey (NHANES) in 2009 to 2010 for 
males aged 20 years or older was 0.18 (0.16, 0.21) (Dobraca et al. 2015). 

• The percentage (with 95% CI) of observations of PFUnDA in serum samples that 
were above the limit of detection in children aged 3–11 years, from data reported 
by NHANES for 2013 to 2014, was 27.5 (21.5 − 33.5) (Jain 2018).  

• PFUnDA was detected in the serum of 35% of mothers in the Northern California 
CHARGE (CHildhood Autism Risk from Genetics and Environment) case-control 
study (serum collected 2009 – 2016) (Kim et al. 2020).   
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PFUnDA passed the human data screen, underwent a preliminary toxicological 
evaluation, and is being brought to the Developmental and Reproductive Toxicant 
Identification Committee for consultation.  This is a brief overview of relevant studies 
identified during the preliminary toxicological evaluation.  

Human epidemiologic studies 

Numerous human studies reporting developmental and reproductive toxicity (DART)-
related effects associated with PFUnDA were identified in the recent literature.  DART 
findings reported in epidemiologic studies published within the last six years are 
summarized here.  The findings are organized by groups of outcomes.   

Indicators of fetal growth 

• Associated with low birth weight (longitudinal cohort) (Gyllenhammar et al. 2018). 
• Associated with low birth weight (retrospective cohort study) (Kwon et al. 2016). 
• Associated in girls with lower birth weight for gestational age, and small for 

gestational age (SGA) at birth (longitudinal cohort) (Wikström et al. 2020).  
• Associated in girls with low birth weight and elevated odds of SGAand lower 

average childhood height z-score (prospective study) (Wang et al. 2016). 
• Non-significant increases in average birth weight (cross sectional study) (Callan 

et al. 2016).  
• Positively associated with indications of gestational growth and postnatal growth 

(cross sectional study) (Cao et al. 2018). 

Neurodevelopment effects  

• Prenatal levels of 19 PFASs were measured in maternal blood at week 17 of 
gestation.  Positive association between PFUnDA and verbal working memory in 
boys.  No association with attention deficit/hyperactivity disorder symptoms, 
language skills or intelligence quotient (prospective study) (Skogheim et al. 
2020). 

Anogenital distance, prenatal exposure 

• Inversely associated with anogenital distance at birth in males (prospective 
cohort study) (Tian et al. 2019). 

Endocrine effects 

• PFUnDA and three thyroid hormones (THs) were measured in cord blood.  
Thyroid stimulating hormone (TSH) levels decreased with increasing 
concentrations of PFUnDA (cross sectional study) (Aimuzi et al. 2019). 
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• PFUnDA and THs were measured in serum from pregnant women in their 
second trimester and 3 days and 6 weeks after delivery (Berg et al. 2015) and in 
addition, TSH concentration was analyzed in newborns in heel-prick samples at 
the two visits after delivery (Berg et al 2017).  PFUnDA was inversely associated 
with mean triiodothyronine (T3) and free T3 (prospective cohort studies) (Berg et 
al. 2015; Berg et al. 2017). 

• PFUnDA was measured in the third trimester and THs levels in cord serum in 
116 neonates.  Maternal PFUnDA levels were associated with lower cord total T3 
and total thyroxine levels (prospective birth cohort study) (Wang et al. 2014). 

Other DART effects 

Respiratory and allergic effects 

• Cord serum PFUnDA was associated with airway infections, common colds at 
age two, and lower respiratory tract infections from 0 to ten years of age 
(prospective birth cohort study) (Impinen et al. 2018). 

• Maternal plasma PFUnDA levels during pregnancy were inversed associated 
with ever having atopic eczema (dermatitis) in girls, wheeze and asthma (mother 
and child cohort study) (Impinen et al. 2019).   

• Maternal plasma PFUnDA measured at 28–32 weeks of gestation was 
associated with eczema in age 2 female infants (longitudinal cohort study) 
(Okada et al. 2014). 

Animal studies  

One whole animal study examining possible DART effects of exposure to PFUnDA was 
identified.  The findings are summarized here.  

• Rat: In a DART guideline screening test, prenatal exposure resulted in decreased 
birth weight and decreased body weight gain at postnatal day 4 (Takahashi et al. 
2014). 
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Titanium dioxide nanoparticles (TiO2 np) 

Titanium dioxide nanoparticles (TiO2 np) are ultrafine particles 1 – 100 nanometers (nm) 
in diameter.  TiO2 np can absorb ultraviolet (UV) radiation, act as catalysts, and confer 
broad antimicrobial protection, among other properties.  TiO2 np applications are highly 
variable, and include use as a food additive, in food packaging, and in a range of other 
materials and products, including cosmetics, sunscreens, protective coatings, plastics, 
paints, solar cells, and ceramic biomedical implants (Baranowska-Wójcik et al. 2020; 
Dréno et al. 2019; US FDA 2017).  Approximately 48% of TiO2 np produced today is 
used in paint products, 19% in plastics, 10% in medicine, food and cosmetics, 10% in 
resin, 8% in paper 3% in fibers, and 2% in rubber (Hong et al. 2017a). 

TiO2 np passed the animal data screen, underwent a preliminary toxicological 
evaluation, and is being brought to the Developmental and Reproductive Toxicant 
(DART) Identification Committee (DARTIC) for consultation.  This is a brief overview of 
relevant studies identified during the preliminary toxicological evaluation.  

Human epidemiologic studies 

No human studies reporting developmental and reproductive toxicity (DART)-related 
effects associated with TiO2 np were identified.   

Animal studies  

Numerous whole animal studies examining possible DART effects of exposure to TiO2 
np were identified.  Findings reported in studies published within the last five years are 
summarized here.  . 

Maternal and developmental effects  

Developmental effects are associated with in utero exposures unless otherwise 
specified. 

• Rat: Increased placental vascular resistance and impaired umbilical vascular 
reactivity (Abukabda et al. 2019).  

• Rat: Perturbed the normal gestational endocrine vascular axis by increasing 
uterine artery vasoconstrictor responses to kisspeptin, increased placental 
weights, decreased placental efficiency (grams fetus/gram placenta) and pup 
weights (Bowdridge et al. 2019).  

• Rat: No marked toxicities in dams or effects on embryo-fetal development (Lee et 
al. 2019).  
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• Rat: No evidence of maternal or developmental toxicity (Warheit et al. 2015). 
• Mouse: Exposure impaired fetal/placental vascularization, inhibited placental cell 

proliferation, induced placental apoptosis by nuclear pyknosis, reduced the ratio 
of placental weight to dam body weight, increased the spongiotrophoblast area in 
the placenta, and decreased expression of several genes in the placenta.  
Exposure had no effect on the number of implanted or resorbed embryos (L 
Zhang et al. 2018).  

• Mouse: Reduced maternal weight gain, placental and fetal weight, and number of 
live fetuses, and inhibited development of the fetal skeleton, with reduced or 
absent ossification (Hong et al. 2017b).  

• Mouse: Decreased placental efficiency and impaired lung development, including 
decreased pulmonary expression of vascular endothelial growth factor-alpha and 
matrix metalloproteinase 9 at the fetal stage, and fibroblast growth factor-18 at 
the alveolarization stage (formation and enlargement of the gas exchange area) 
(Paul et al. 2017). 

• Mouse: No overt fetal malformations or changes in pregnancy outcomes, or 
effects on postnatal growth (Notter et al. 2018). 

• Mouse: Fetal cardiac changes include a 43% increase in left ventricular mass, a 
25% decrease in fetal cardiac output, decreased electron transport chain 
complex IV activity, ten-fold higher levels of H2O2, increased DNA methylation, 
and altered gene and protein expression; sustained changes in left ventricular 
function observed at 11 weeks of age (e.g., 18% decrease in fractional 
shortening) (Kunovac et al. 2019). 

• Monkey (macaque): No effects on hemoglobin regulation in the neonatal brain 
(Mitsunaga et al. 2016).   

Neurodevelopmental effects 

Effects are associated with in utero exposures unless otherwise specified. 

• Rat: Reduced brain-derived neurotrophic factor in the hippocampus; increased 
hippocampal interleukin-6 concentrations; increased malondialdehyde and nitric 
oxide metabolites and produced other metabolic changes in hippocampal, 
cortical, and cerebellar tissues in the neonate brain (Asghari et al. 2019). 

• Rat: Increased apoptotic cells and reduced neurogenesis in the hippocampus of 
offspring on postnatal days (PND) one and 21 (Ebrahimzadeh Bideskan et al. 
2017). 

• Rat: Increased latency to reach the visible platform (no difference on the final 
trial, however) and increased the number of errors in the Working Memory 
Correct test (repeat entries into arms that once contained a water-escape 
platform) when assessed at 5 months of age (Engler-Chiurazzi et al. 2016).  
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• Rat: Exposure of lactating rats from PND 2 – 21 impaired memory and learning in 
offspring on PND 21 (Mohammadipour et al. 2016).  

• Mouse: Maternal exposure from GD 7 through PND 21 induced apoptosis and 
autophagy of hippocampal neurons and ; decreased dendritic length of 
hippocampal neurons in offspring on PND 21 (Zhou et al. 2017).  

• Mouse: Maternal exposure on postpartum days 7-21 inhibited hippocampal 
development (axonal and dendritic growth) (Zhou et al. 2019b).  

• Mouse: Maternal exposure during pregnancy and lactation inhibited development 
of the central nervous system in offspring, resulting in thinning of the cerebral 
and cerebellar cortex, decreased numbers of neurons per unit area of cerebrum, 
edema, dysplasia of neurites in hippocampal pyramidal cells, thinning of the 
pyramidal cell layer in the hippocampus, and decreased learning and memory, as 
assessed between PND 35 to 39 (Hong et al. 2018). 

• Mouse: Disrupted anatomical structure of the fetal brain and liver (Naserzadeh et 
al. 2018). 

• Mouse: Behavioral deficits with relevance to autism spectrum disorder, including 
dose-dependent impairments in neonatal vocal communication (PND 6) and 
juvenile sociability (PND 28 and 42), and dose-dependent increases in prepulse 
inhibition of the acoustic startle reflex (Notter et al. 2018).   

• Mouse: Retarded axonal and dendritic outgrowth (Zhou et al. 2019a). 

Endocrine effects 

• Rat: Decreased maternal plasma estradiol on GD 20; no effect on maternal 
progesterone, prolactin, corticosterone or kisspeptin (Bowdridge et al. 2019).  

• Rat: Exposure of adult males reduced the levels of testosterone and 
gonadotropins and downregulated expression of 17beta-hidroxy steroid 
dehydrogenase (Hussein et al. 2019). 

• Rat: Exposure of adult males decreased testicular steroidogenic acute regulatory 
protein and serum testosterone (Shahin and Mohamed 2017). 

• Rat: Exposure of adult males decreased serum testosterone (Morgan et al. 
2017). 

• Mouse: Exposure of 1-month old females for 30 days induced premature ovarian 
failure; effects included lower serum levels of estradiol, progesterone and inhibin 
B, and increased levels of gonadotropins and anti-Mullerian hormone (Hong and 
Wang 2018). 

• Mouse: Exposure of adult males reduced the number of Leydig cells and 
testosterone concentrations in serum and the testes (Khorsandi et al. 2016). 

• Mouse: Exposure of adult males decreased serum and testicular testosterone 
concentrations (Khorsandi et al. 2017). 
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• Mouse: Exposure of eight week old males impaired testicular function without 
changes in plasma levels of sex hormones (Miura et al. 2017). 

Epigenetic effects 

• Rat: Prenatal exposure resulted in significant epigenetic and transcriptomic 
changes in fetal cardiac tissue (Stapleton et al. 2018).  

• Mouse: Increased fetal DNA methylation in cardiac tissue following prenatal 
exposure, along with increased hypoxia-inducible factor 1-alpha (Hif1α) activity 
and DNA (cytosine-5)-methyltransferase 1 (Dnmt1) protein expression (Kunovac 
et al. 2019).  

Metabolic effects 

• Rat: Exposure during pregnancy altered the dam’s gut microbiota and increased 
fasting blood glucose (Mao et al. 2019b). 

Male reproductive effects 

• Rat: Increased oxidative stress in testicular tissues, reduced sperm motility, 
viability, and sperm cell count, and increased sperm abnormalities, in addition to 
damaging testicular histological architecture and upregulating proapoptotic gene 
(Bax) transcripts in testicular tissues (Hussein et al. 2019). 

• Rat: Decreased sperm viability, increased incidences of sperm morphological 
abnormalities (e.g., deformed and detached heads, curved and coiled tails), and 
testicular interstitial edema and sloughing of the germinal epithelium, with 
apoptotic changes such as pyknosis, karyolysis and karyoschisis (Morgan et al. 
2017). 

• Rat: Induced prostatic and testicular injury and corresponding reproductive-
related aberrations, including decreased sperm count, increased sperm 
malformations, and increased testicular gamma-glutamyltransferase activity 
(Shahin and Mohamed 2017). 

• Rat: Degenerative changes in the spermatogenic epithelium, including thinning, 
disorganization of layers, detachment of sperm cells from the basement 
membrane, and reduced proliferative activity and differentiation potential of 
epithelial cells (Sharafutdinova et al. 2018).  

• Mouse: Immunological dysfunction in mouse testes, reduction of fertility, 
infiltration of inflammatory cells, rarefaction, apoptosis, and/or necrosis of 
spermatogenic cells and Sertoli cells (Hong et al. 2016).  

• Mouse: Histological changes in testicular tissues, decreased testicular weight 
and sperm quality, increased apoptotic index in all types of germ cells, and 
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increased lipid peroxidation and decreased superoxide dismutase and catalase 
activites in the testes (Khorsandi et al. 2017). 

• Mouse: Impaired testicular function and reductions in two sperm motion 
parameters (motile and progressive) and in sperm numbers in cauda 
epididymides; no change in body weights, liver weights, or testicular-related 
organ weights (Miura et al. 2017). 

Mechanistic, in vitro, and other relevant data 

• Human: In vitro exposure of primary cultures of amniotic cells increased DNA 
fragmentation, apoptosis and DNA damage (Mottola et al. 2019). 

• Human: Exposure to the trophoblastic cell line HTR8-SVneo caused proteostasis 
disruption and autophagy, increasing endoplasmic reticulum stress related 
markers, and expression of genes associated with mitophagy (Y Zhang et al. 
2018).  

• Human: Exposure to the trophoblastic cell line HTR8-SVneo disrupted the 
cytoskeleton and impaired cell invasion ability (Mao et al. 2019a). 

• Rat: In vitro exposure of primary Leydig cells induced cellular vacuolization, and 
nuclear condensation, decreased cell viability, mitochondrial membrane potential, 
signal transduction second messengers associated with ERK1/2 PKA -PKC 
signaling pathways, and steroidogenic enzymes in a dose-dependent manner, 
and suppressed testosterone production (Li et al. 2018).  

• Mouse: Retarded axonal and dendritic outgrowth was associated with increased 
expression of components of the extracellular signal-regulated kinase1/2 
(ERK1/2) mitogen-activated protein kinase (MAPK) signaling pathway (Zhou et 
al. 2019a). 

• Mouse: Maternal exposure on postpartum days 7-21 altered gene expression in 
the hippocampus of pups, including expression of genes involved in the Rho and 
the N-methyl-D-aspartate signaling pathways (Zhou et al. 2019b).  

• Mouse: Induced cell apoptosis, altered microtubule arrangement and dynamics, 
and impaired cell migration ability in GC-2 and TM4 germ cell lines (derived from 
mouse spermatogonia and Sertoli cells, respectively) (Mao et al. 2017). 

• Rainbow trout: In vitro exposure of sperm decreased sperm velocity and 
increased oxidative stress markers in sperm homogenates (Ozgur et al. 2018).  
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Vinpocetine 

(CAS No. 42971-09-5) 
 

 

Vinpocetine is a synthetic compound derived from a plant alkaloid that is sold as an 
unregulated dietary supplement (NTP 2020).  Purported benefits include: enhanced 
brain function, rapid weight and/or fat loss, increased energy, improved visual acuity, 
improved memory and focus.  Other claimed benefits include prevention of motion 
sickness, and treatment of menopausal symptoms, chronic fatigue syndrome, seizure 
disorders, and hearing or eye disorders.  The efficacy of vinpocetine for any of these 
uses has not been assessed by the US Food and Drug Administration 
(https://www.fda.gov/food/dietary-supplement-products-ingredients/vinpocetine-dietary-
supplements).  Vinpocetine products sold in the US recommend daily doses of 5 to 90 
mg, although actual vinpocetine levels in tested products may vary widely from what is 
stated on the label (Catlin 2018). 

Vinpocetine passed the animal data screen, underwent a preliminary toxicological 
evaluation, and is being brought to the Developmental and Reproductive Toxicant 
Identification Committee for consultation.  This is a brief overview of the relevant studies 
identified during the preliminary toxicological evaluation.   

Human epidemiologic studies 

No human epidemiologic studies reporting developmental and reproductive toxicity 
(DART)-related effects associated with vinpocetine were identified.   

Animal studies  

Whole animal studies examining possible DART effects of exposure to vinpocetine 
consist of a set of studies conducted by the National Toxicology Program (NTP), 
examining prenatal developmental toxicity (NTP, 2020).  Dose range-finding prenatal 
developmental toxicity studies were performed in rats and rabbits, and a full-scale 

https://www.fda.gov/food/dietary-supplement-products-ingredients/vinpocetine-dietary-supplements
https://www.fda.gov/food/dietary-supplement-products-ingredients/vinpocetine-dietary-supplements
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developmental toxicity study was conducted in rats.  Findings reported in these studies 
are summarized here.  

• Rabbits: Decreased fetal survival evidenced as increased early resorptions/litter 
(at 300 mg/kg-day), increased percent post implantation loss, and decreased live 
fetuses/litter in range-finding study (NTP, 2020; Catlin 2018). 

• Rats: Significant, treatment-related effect on post implantation loss for all dose 
groups (including lowest dose tested = 20 mg/kg-day), and total resorption of 
litters at doses of 80 mg/kg-day or higher in range-finding study (NTP, 2020). 

• Rats: Increased post implantation loss resulting in significantly decreased live 
fetuses/litter (at 60 mg/kg-day) and reduced gravid uterine weight; treatment-
related increased frequency of ventricular septal defect in all exposed groups 
(including lowest dose tested = 20 mg/kg-day); and significantly increased 
incidences of incompletely ossified thoracic centrum, and supernumerary ribs in 
the full-scale study (NTP, 2020; Catlin, 2018). 

Mechanistic, in vitro, and other relevant data 

• Rat: The distribution and toxicokinetics of vinpocetine and its metabolite, 
apovincaminic acid (AVA) was studied in pregnant rats at human-relevant doses.  
Vinpocetine was rapidly absorbed by dams and transferred to the fetal 
compartment.  AVA plasma levels in dams were nearly 3-fold higher than 
vinpocetine; in fetuses, vinpocetine levels were higher than AVA (Waidyanatha et 
al. 2018). 

• Xenopus/rodent model system: Vinpocetine was tested for effects on the function 
of excitatory amino acid receptor subtypes expressed in Xenopus oocytes after 
injection of rodent brain poly(A)+ mRNA.  Vinpocetine was one of several 
compounds found to exert dose-dependent inhibition on the oocyte response to 
N-methyl-D-aspartate (NMDA) in the presence of glycine.  Neither the EC50 (half 
maximal effective concentration) value nor the current-voltage relationship of the 
NMDA response below 0 millivolts were affected.  Inhibition of NMDA channels 
by vinpocetine appeared similar to the action of Zn2+, which closes the gate of 
the NMDA channel (Kaneko et al. 1991).  
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Zearalenone (ZEA) 

(CAS No: 17924-92-4)  

 

Zearalenone (ZEA) is a mycotoxin produced by certain Fusarium fungi (F. graminearum 
and F. semitectum).  ZEA production is favored under conditions of high humidity and 
low temperature, and can be present as a contaminant of grains such as maize, wheat, 
rye and oats in European countries (Zinedine et al. 2007), and corn, wheat, oats and 
rice in the US (Zhang et al. 2018; Zinedine et al. 2007). 

ZEA is stable under most cooking conditions, and only partially broken down under high 
temperatures.  ZEA is an ingredient in many breast-enhancing dietary supplements, due 
to its estrogenic activity and its breast enlargement effects observed in exposed 
humans (Pazaiti et al. 2012).  Exposure to ZEA is widespread.  For example, 

• ZEA is ubiquitous in human and animal feedstuff and often co-occurs with other 
mycotoxins.  For example, in one study ZEA was detected in 12% of sampled 
infant/toddler foods (including multigrain-, oat-, rice-, corn-, and soy-based 
products), and in 10% of sampled breakfast cereals (including multigrain-, oat-, 
corn-, and wheat-based products) (Zhang et al. 2018). 

• ZEA has been detected in milk in several countries, including the US (EFSA 
2016). 

• In a biomonitoring study conducted in girls in New Jersey, ZEA was detected in 
the urine of 55.2% of study participants (Bandera et al. 2011), with a median 
urinary ZEA level of 1.02 ng/ml (Rivera-Núñez et al. 2019). 

• In surface waters from the central part of Illinois, ZEA was detected in 32% of the 
samples (limit of detection: 0.4 ng/ L); the highest level detected was 5.7 ng/L 
(Maragos 2012).   

ZEA passed the animal data screen, underwent a preliminary toxicological evaluation, 
and is being brought to the Developmental and Reproductive Toxicant Identification 
Committee for consultation.  This is a brief overview of recent relevant studies identified 
during the preliminary toxicological evaluation. 
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Human epidemiologic studies 

A limited number of human studies reporting developmental and reproductive toxicity 
(DART)-related effects associated with ZEA were identified in the recent literature.  
DART findings from epidemiologic studies published within the last nine years are 
summarized here.  

Association with puberty development 

• Girls with detectable urinary ZEA levels tended to be shorter and less likely to 
have reached the onset of breast development (cross-sectional analysis) 
(Bandera et al. 2011). 

• Girls with detectable urinary concentrations of total mycoestrogens (sum of ZEA 
and alpha-zearalanol, and their metabolites) at baseline were significantly shorter 
at menarche than girls with levels below detection.  ZEA and total mycoestrogen 
concentrations were inversely associated with height- and weight-z-scores at 
menarche (cross-sectional analysis) (Rivera-Núñez et al. 2019). 

Animal studies  

Numerous whole animal studies examining possible DART effects of exposure to ZEA 
were identified.  Findings reported in studies published within the last five years are 
summarized here.  

Maternal and developmental effects 

• Mouse: Maternal and developmental toxicity which included an increase of 
micronuclei formation in bone marrow, decreased maternal weight gain and litter 
weight; fetal growth retardation, increased number of abortions and resorbed 
fetuses, abnormalities of fetal bone ossification, and number of fetuses with a 
hematoma (Althali et al. 2019). 

• Mouse: Obstruction of essential processes for establishing and maintaining 
pregnancy, such as embryo transport, the decidual response, and activation of 
luteal function.  Delayed implantation and loss of conceptuses and retarded 
growth of the fetus after normal implantation (Kunishige et al. 2017).  

• Mouse: Increased resorption of implantation sites, placental hemorrhage; 
decreased placental and fetal weights (Li et al. 2019). 

• Rat: Decreased feed intake and body weight (bw) of pregnant rats, decreased 
birth weight and viability of pups and decreased feed intake and bw of F1 
females at postnatal days 21 and 63 (Gao et al. 2017).  
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• Pig: Reduction in maternal mass gain during gestational day (GD) 35 to 70.  
Reduction in placenta weight at GD 70 and parturition, increase in maternal 
ovary weight at GD 70, and decrease in average daily feed intake during 
lactation.  Decrease in total number and average bw of fetuses at GD 70, number 
of piglets born, litter birth weight, average bw of piglet at birth, number of piglets 
born alive, born alive litter weight, and born alive piglet bw at birth (Zhang et al. 
2015).  

Female reproductive effects, prenatal exposure 

• Mouse: Decreased percentage of ovarian germ cells at the diplotene stage, more 
germ cells remained at the zygotene and pachytene stages.  Reduced ovarian 
mRNA levels of meiosis-related genes.  Decreased number of primordial follicles 
in newborns (Liu et al. 2017).  

• Rat: Increased incidence of follicular atresia and a thinning of the uterine layer 
(Gao et al. 2017). 

Male reproductive effects, prenatal exposure 

• Mouse: Disruption of meiosis, resulting in inhibition of the spermatogenesis and 
diminished semen quality, as indicated by decreases in spermatozoa motility and 
concentration (Men et al. 2019). 

• Rat: Increased weight of adult testis with atrophy of the seminiferous tubules and 
decreased number of spermatocytes and mature sperm (Gao et al. 2018a).  

• Rat: Decreased anogenital distance (Pan et al. 2020).  

Endocrine effects, prenatal exposure 

• Rat: Increased serum follicle-stimulating hormone concentrations and decreased 
serum estradiol in F1 adult female (and also in F0 dams).  Reduced levels of 
gonadotropin-releasing hormone receptor in fetal brain and weaned female brain.  
Decreased mRNA and protein levels of estrogen receptor (ER)-alpha and 3-beta-
hydroxysteroid dehydrogenase in F1 adult uterus and/or ovaries.  Dose-
dependent increase in 3-beta-hydroxysteroid dehydrogenase in the placenta 
(Gao et al. 2017).  

• Rat: Alteration in F1 serum hormone concentration and steroidogenic enzymes.  
Decreased luteinizing hormone and testosterone; increased estradiol.  
Decreased testicular protein levels of 3-beta-hydroxysteroid dehydrogenase and 
steroidogenic acute regulatory protein levels at weaning and in adulthood.  
Decreased gene and protein expression of gonadotropin-releasing hormone 
receptor and ER-alpha in the fetal brain (Gao et al. 2018a).  
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• Rat: Decreased serum testosterone levels, Leydig cell steroidogenic enzyme 
proteins, and fetal Leydig cell numbers, thought to result from a delay in 
commitment of stem Leydig cells to the Leydig cell lineage and proliferation (Pan 
et al. 2020).  

Female reproductive effects, postnatal exposure 

• Mouse: Neonatal exposure induced a premature vaginal opening.  Disrupted 
estrus cycles and decreased follicular profiles (Parandin et al. 2017). 

• Rat: Histological examination showed follicular atresia (Abbasian et al. 2018). 
• Rat: Induced histopathologic alterations in the ovaries and uterus (Gao et al. 

2018b). 
• Pig: In post-weaning piglets, increased proportion of growing follicles and 

diameter of the largest growing follicle in ovaries (Dai et al. 2016). 
• Pig: Increased size of vulva and relative weight of the reproductive organs (Fu et 

al. 2018; Su et al. 2018). 
• Pig: Decreased proportion of primordial follicles and increased proportion of 

atretic primordial follicles (Yang et al. 2018). 

Male reproductive effects, postnatal exposure 

• Mouse: Reduction in the number and motility of spermatozoa (Boeira et al. 2015; 
Del Fabbro et al. 2019). 

• Mouse: Decrease of epididymis and testis indicies; decrease in sperm 
concentration, sperm normality rate, and sperm motility parameters, including 
percentage of motile sperm, tropism percentage and sperm average path velocity 
(Long et al. 2016). 

• Mouse: Reduced sperm density and sperm aberration rate (Long et al. 2017). 
• Mouse: Decreased number of spermatogenic cells in seminiferous tubules.  

Increased DNA double stand breaks in spermatogenic cells; decreased sperm 
concentration, viability, motility, and hyperactive rate.  Increased sperm deformity 
and mortality rates (Pang et al. 2017). 

• Rat: Increased cellular apoptosis and DNA fragmentation in the testis (Cheraghi 
et al. 2015). 

• Rat: Reduced mitochondrial content of germinal cells and increased germinal cell 
apoptosis and necrosis (Adibnia et al. 2016).  

• Pig: Interstitial (Leydig) cells between the seminiferous tubules of the testes were 
markedly smaller and the interstitium was hyperemic, with evident blood stasis in 
small capillaries, and observations of degenerating seminiferous tubules.  
Reversible decrease in sperm motility rate, the percentage of progressively 



 

Chemical for 180 Office of Environmental Health 
DARTIC Consultation:  Hazard Assessment 
ZEA  October 2020 

motile sperm, and the number of sperm exhibiting rapid movement (Bielas et al. 
2017). 

• Rabbit: Increases in spermatozoa beat-cross frequency, in the percentages of 
spermatozoa with head and midpiece abnormalities, and in the percentages of 
spermatozoa with fragmented DNA.  Histologic examination revealed no 
abnormal findings in the testes or epididymides (Tsouloufi et al. 2018). 

Endocrine effects, postnatal exposure 

• Mouse: Reduced expression of kisspeptin and neuronal density in the 
anteroventral periventricular and and arcuate nuclei in females.  Decreased  
plasma levels of luteinizing hormone and increased plasma levels of estradiol 
(Parandin et al. 2017). 

• Mouse: Reduction in plasma testosterone levels in males (Boeira et al. 2015; Del 
Fabbro et al. 2019).  

• Rat: Decreased serum estradiol and increased serum follicle-stimulating 
hormone concentrations in females (Gao et al. 2018b). 

• Rat: Increased plasma testosterone, progesterone and luteinizing hormone levels 
and reduced plasma estradiol levels in females (Abbasian et al. 2018). 

• Rat: Reduced mRNA and protein levels of ER-alpha and increased mRNA and 
protein levels of ER-beta in the testes.  Decreased mRNA levels of ER-alpha in 
sperm; no remarkable change in sperm ER-beta mRNA levels.  Reduced Leydig 
cell steroidogenesis (Adibnia et al. 2016).  

• Rat: Decreased serum testosterone levels and reduced Leydig cell numbers 
(Zhou et al. 2018). 

• Pig: Reduced serum levels of luteinizing hormone, follicle-stimulating hormone, 
progesterone, and estradiol.  Increased expression of ER-alpha in uterus and 
ovary and ER-beta in vagina (Fu et al. 2018). 

• Pig: Decreased serum levels of estradiol, progesterone, luteinizing hormone, and 
follicle-stimulating hormone in females (Su et al. 2018).  

• Pig: Increases in ovarian mRNA and protein expression levels of ER-alpha and 
ER-beta (Yang et al. 2018). 

Mechanistic, in vitro, and other relevant data 

• Mouse: In vivo mechanistic study reported increased DNA double-strand breaks  
at diplotene stage (Liu et al. 2017).  

• Mouse: Low enzyme activity (glutathione peroxidase, glutathione reductase, 
glutathione-S-transferase) and non-enzymatic defenses (reduced glutathione) in 
testes (Del Fabbro et al. 2019).  
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• Mouse: Downregulation of gene and protein expression of Bcl-2 and upregulation 
of gene and protein expression of Bax and caspase-3 (apoptosis regulator 
genes) in testes.  Upregulated mRNA expression of endoplasmic reticulum 
stress-related gene (Xbp-1) in testes (Long et al. 2017). 

• Rat: Inhibition of androgen production and steroidogenic enzyme activities in 
immature Leydig cells in vitro, by downregulating expression levels of the 
cholesterol side cleavage enzyme, 3-beta-hydroxysteroid dehydrogenase, and 
the enzyme steroid 5alpha-reductase (Zhou et al. 2018). 

• Rat: Reduced levels of the ATP binding cassette transporters b1 and c1 (ABCb1 
and ABCc1) in the placenta and in fetal and weaned F1 brains (Gao et al. 2017). 

• Rat: Increased ovarian expression of tumor necrosis factor-alpha and the 
secreted frizzled-related protein-4 (Abbasian et al. 2018). 

• Pig: Increased expression of several ATP-binding cassette transporters in the 
vagina, uterus, and ovary (Fu et al. 2018). 

• Pig: Dose-related activation of the ERs/GSK-3beta-dependent Wnt-1/beta-
catenin signaling pathway in the ovaries of postweaning females (Yang et al. 
2018). 
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