Dibenzanthracenes and Dibenz[a,c]anthracene

Dibenzanthracenes are polyaromatic hydrocarbons (PAHs) that are ubiquitous products of incomplete combustion. Sources include cigarette smoke, gasoline engine exhaust and industrial emissions including fuel combustion, coke oven and coal-tar distillation. Human exposure may occur in occupational settings, and to the general public from contaminated air, food or water.

There are three dibenzanthracenes isomers: dibenz[a,c]anthracene, dibenz[a,j]anthracene and dibenz[a,h]anthracene. Their chemical structures are shown below. Dibenz[a,h]anthracene is listed as a carcinogen under Proposition 65. The data for this chemical are also compiled since they inform consideration of dibenzanthracenes as a group.

Chemical name	Dibenz[<i>a,c</i>]anthracene	Dibenz[<i>a,j</i>]anthracene	Dibenz[<i>a,h</i>]anthracene Proposition 65 carcinogen
Structure			

Dibenzanthracenes (as a chemical group) and one individual chemical within the group (*i.e.*, dibenz[*a,c*]anthracene) each passed the animal data screen, underwent a preliminary toxicological evaluation, and are being brought to the Carcinogen Identification Committee (CIC) for consultation. This is a compilation of the relevant studies identified during the preliminary toxicological evaluation. The CIC is being asked to advise OEHHA on whether dibenzanthracenes as a group, or dibenz[*a,c*]anthracene alone, or both should be considered for listing at a future CIC meeting.

Epidemiological data

No cancer epidemiology studies on dibenzanthracenes were identified.

Animal carcinogenicity data

Dibenz[a,c]anthracene

- Skin application (2x/week for 65 weeks and observed for lifetime) in female Swiss mice: Lijinsky et al. (1970) as reviewed in IARC (2010, p. 253)
 - Increase in skin carcinoma (by pairwise comparison)
- Single subcutaneous (s.c.) injection in male and female C57BL/6J, DBA/2J and B6D2F₁ mice and observed for 12 months: Kouri *et al.* (1983) as reviewed in IARC (2010, pp. 427-428)
 - No treatment-related tumor findings
- Three intraperitoneal (i.p.) injections of 400 nmol in newborn male B6C3F₁ mice and observed for 12 months: von Tungeln et al. (1999) as reviewed in IARC (2010, pp. 353 & 428)
 - o Increase in liver adenoma (by pairwise comparison)

Initiation-promotion studies, as reviewed in IARC (2010)

- Single s.c. injection of dibenz[a,c]anthracene, followed 2 weeks later by croton oil in acetone (3x/week for up to 66 weeks) in female Swiss mice: Van Duuren et al. (1968) as cited by IARC (2010, p. 280)
 - No treatment-related tumor findings
- Single s.c. injection of dibenz[a,c]anthracene, followed 2 weeks later by TPA in acetone (3x/week for up to 60 weeks) in female Swiss mice: Van Duuren et al. (1970) as cited by IARC (2010, p. 281)
 - o Increase in skin papilloma (by pairwise comparison) and carcinoma (marginal by pairwise comparison, p=0.053)
- Single dermal application of dibenz[a,c]anthracene, followed 1 week later by TPA (2x/week for 34 weeks) in female CD-1 mice: Scribner (1973) as cited by IARC (2010, p. 281)
 - o Increase in skin papilloma (by pairwise comparison)
- Single dermal application of dibenz[a,c]anthracene, followed 1 week later by TPA (2x/week for 67 weeks) in female CD-1 mice:
 Chouroulinkov et al. (1983) as reviewed by IARC (2010, pp. 281 & 427)
 - No treatment-related tumor findings

Dibenz[a,j]anthracene

- Skin application (2x/week for 60 or 81 weeks and observed for lifetime) in female Swiss mice: Lijinsky et al. (1970) as reviewed in IARC (2010, p. 256)
 - o Increase in skin carcinoma (by pairwise comparison)
- Single s.c. injection and observed for life in female Swiss mice: Lijinsky et al. (1970) as reviewed in IARC (2010, p. 309)
 - No treatment-related tumor findings

Initiation-promotion studies, as reviewed in IARC (2010)

- Single dermal application of dibenz[a,j]anthracene, followed by TPA
 (2x/week for 20 weeks) in female SENCAR mice: Sawyer et al. (1987)
 as reviewed by IARC (2010, pp. 282 & 432)
 - o Increase in skin papilloma (by pairwise comparison)
- Single dermal application of dibenz[a,j]anthracene, followed by TPA
 (2x/week for 14 weeks) in female SENCAR mice: Harvey et al. (1988)
 as reviewed by IARC (2010, pp. 283 & 433)
 - o Increase in skin papilloma (by pairwise comparison)

Dibenz[a,h]anthracene

Dibenz[a,h]anthracene is a Proposition 65 carcinogen (1988) and an IARC 2A carcinogen (2010). Positive evidence from animal carcinogenicity studies is seen with multiple routes of exposure in multiple species at multiple tumor sites:

- Dermal application in mice (skin papilloma and carcinoma, lung adenoma)
- S.c. injection in mice (sarcoma, fibrosarcoma, lung tumor) and rats (sarcoma)
- I.p. injection in mice (lung adenoma)
- Oral administration in mice (forestomach tumor including carcinoma, mammary carcinoma, lung carcinoma, hemangioendothelioma)
- Intrapulmonary implantation in mice (lung adenoma) and rats (lung carcinoma)
- Intratracheal injection in rats (lung carcinoma, liver adenoma and carcinoma) and hamsters (lung tumor including carcinoma)
- Intravenous administration in mice (lung tumor)

Multiple initiation-promotion studies have demonstrated the initiating activity of this Proposition 65 carcinogen in mice (IARC, 2010, pp. 282 & 429).

Other relevant data

 Genotoxicity studies, as reviewed by IARC (1983, 2010) and GENETOX (1995)

Dibenz[a,c]anthracene

- Mutagenicity assays in Salmonella typhimurium (with S9) and mammalian cells in culture (positive)
- Forward mutation assays in Chinese hamster V79 cells (positive)
- DNA damage in *Bacillus subtilis* (positive)
- Unscheduled DNA synthesis in vitro (inconclusive)
- Sister chromatid exchange in Chinese hamster ovary cells (negative)
- Cell transformation assays in Syrian hamster embryo cells (positive and inconclusive)
- Cell transformation assays in mouse embryo cells (negative)

Dibenz[a,j]anthracene

- Mutagenicity assays in Salmonella typhimurium (with S9) (positive)
- Formation of DNA adducts in mouse epidermis after topical application (positive)
- Induced mutation in proto-oncogene (Ha-ras codon 61) in mouse skin papilloma (positive)

Dibenz[a,h]anthracene

- Mutagenicity assays in Salmonella typhimurium (with S9) (positive)
- Forward mutation assays in Chinese hamster cells (positive)
- DNA damage in E. Coli and Bacillus subtilis (positive)
- Sex-linked recessive lethal gene mutation in *Drosophila melanogaster* (positive)
- Sister chromatid exchange in Chinese hamster ovary cells in vitro (positive)
- Unscheduled DNA synthesis in vitro (positive)
- Sister chromatid exchange in vivo (positive)
- Formation of DNA adducts (positive)
- Cell transformation assays in Fischer rat embryo cells, Syrian hamster embryo cells and mouse embryo cells (all positive)
- Structure activity considerations
 - Each of the three dibenzanthracenes has one or more "bay regions," areas bounded by three aromatic rings, where diol epoxides are commonly formed.

- Many dibenzanthracene metabolites are mutagenic or tumor initiators. Examples are given below:
 - Dibenz[a,c]anthracene-10,11-dihydrodiol
 - mutagenic
 - tumor initiator
 - o Dibenz[a,j]anthracene-3,4-diol
 - mutagenic
 - tumor initiator
 - o Dibenz[a,j]anthracene-3,4-diol-1,2-oxide
 - mutagenic
 - tumor initiator
 - Dibenz[a,h]anthracene-3,4-diol
 - Mutagenic
 - Tumor initiator
 - o Dibenz[a,h]anthracene-3,4-diol-1,2-oxide
 - Mutagenic

Reviews

IARC (1983, 2010)

References¹

GENE-TOX database (1995). Dibenz[a,c]anthracene. Toxnet, National Library of Medicine. Available at: http://toxnet.nlm.nih.gov/cgibin/sis/search/r?dbs+genetox:@term+@rn+@rel+"215-58-7"

International Agency for Research on Cancer (IARC, 1983). IARC Monographs on the Evaluation of Carcinogenic Risk to Humans. Polynuclear Aromatic Compounds. Part I Chemical, Environmental and Experimental Data. Volume 32. IARC, Lyon, pp. 289-297, 299-308.

International Agency for Research on Cancer (IARC, 2010). IARC Monographs on the Evaluation of Carcinogenic Risks to Humans. Some Non-heterocyclic Polycyclic Aromatic Compounds and Some Related Exposures. Volume 92. IARC, Lyon, pp. 36, 253-256, 280-283, 304-309, 318-319, 322, 333-334, 353, 368-369, 386-387, 408, 427-433, 468-471, 594-596, 762, 770-773.

¹ Excerpts or the complete publication have been provided to members of the Carcinogen Identification Committee, in the order in which they are discussed in this document.