Historical and future impacts of climate change to the vegetation of California

James H. Thorne; UC Davis; 6/17/2015; jhthorne@ucdavis.edu

Interactions of Climate with Plants/Vegetation

	Physical	Biological/Ecological
Direct	Drought	Desiccation
	Flood	Phenological
	Heat	Range Shifts
		Demographic
Indirect	Fire	Pathogen outbreaks
		Phenological
		Competition (invasive plants)

Interactions of Climate with Plants/Vegetation

Photo by Stan Shebs, used under a Creative Commons License.

Minimum Temperature

Thorne et al. 2015; Flint et al. 2012, 2013

Precipitation

2706 - 3737

150

Kilometers

300

1981-2010 Standard Deviation

degree Celsius

-0.6 - 0.0
0.1 - 0.6
0.7 - 1.2
1.3 - 1.8
1.9 - 2.4
2.5 - 3.0
3.1 - 3.6
3.7 - 4.2
4.3 - 4.8
4.9 - 5.4

Historic: 1951-1980 to 1981-2010

GFDL A2: 1981-2010 to 2070-2099

Precipitation

Climatic Water Deficit

1981-2010 Standard Deviation

Climatic Water Deficit

Watersheds with the Highest Change Index

The PAST

The Wieslander VTM Project

- Conducted in the 1930s
- Basis for much of current understanding of California Vegetation
- Mapped 1/3 of the state
- 16,000 vegetation plots
- Over 3000 photographs

VTM-FIA data have been used for:

Assessing changes in composition and structure

Exploring environmental drivers of change

Exploring integration of plots and maps

McIntyre et al. 2015 PNAS

Winter Minimum Temperature Difference - Dec, Jan, F

Difference = Tmin 1993 - Tmin 1920*

Winter Freeze Line - Dec, Jan and Feb Comparing Minimum Temperatures Between 1920 and 1993

^{*1920} data is the average between 1900-1940; 1993 data is the average between 1980-2006

Change in stand structure of subalpine forests (1934 to 2007) for all species, all plots (n = 139):

Many more small trees; fewer large trees

Modeled Change in 50% cover converting to hardwoods

CALIFORNIA PLACERVILLE SHEET

Study Area Central & Northern Sierra

Analytical framework development

Historic WHR Types

Current WHR Types

Historic Extents

Urban 392 km² Working Landscapes 4771 km²

Current Extents

Urban 2258 km² Working Landscapes 2981 km²

Future Extents

Urban + 61 km² Working Landscapes -36 km²

Summary USFS April 21 2015 Aerial Survey

Area surveyed: 4.1 million acres Areas with mortality: 835,000 acres Estimated number of trees killed: 10,450,000

Overview of flown area and mapped tree mortality and damage.

Jeffrey Moore (email:

jwmoore02@fs.fed.us phone: 530-759-1753)

Percent tree canopy cover within California urban areas (map).

Estimated biomass (tons/grid cell) within California urban areas (map).

Estimated CO₂ stored (tons/grid cell) within California urban areas (map).

Climate Change Macrovegetation Vulnerability Assessment

Ponderosa Pine

CNRM RCP4.5

MIROC RCP 8.5

Minimum Temperature

Degree Celsius

Rim Fire Boundary.

Green – places that remain within bioclimatic envelope at end of century.

Red: places that fall outside of bioclimatic envelope by 2040

A few comments on indicators for plants & vegetation

- Active management of natural lands means there are few areas in which observed landscape-level dynamics will be purely due to climate.
- Active management can represent experimental treatments that could be evaluated from a climate change perspective.
- Differences in carbon sequestration and retention potential on natural lands is already driving different practices in various places around California.
- As downscaled CMIP5 GCMs apparently have more complex spatial patterns for California, it is critical to be explicit about those, and to use consistent models for future forecasts across fields.
- Integration of remote sensing with spatially explicit models and ground data is a promising prospect for better understanding vegetation response to climate change.
- Ecotone Dynamics; Species Turnover; Demographics; Composition; and Phenology!

VIDEO: Mapping Change in Sierra Nevada Forests

2D on vimeo: http://vimeo.com/41524838

3D on youtube: http://www.youtube.com/watch?v=ZGo-vI4Ey44

Log In

Explore

Help

Search

Q

