Evidence on the Carcinogenicity of Vinyl Acetate

Carcinogen Identification Committee Meeting December 19, 2024

Cancer Toxicology and Epidemiology Section Reproductive and Cancer Hazard Assessment Branch Office of Environmental Health Hazard Assessment, CalEPA

Overview

- Introduction
- Epidemiologic studies
- Animal studies
- Mechanistic considerations
 - Pharmacokinetics and metabolism
 - Key characteristics (KCs) of carcinogens
- Similarities between vinyl acetate and acetaldehyde: carcinogenicity and genotoxicity

Vinyl Acetate

- A synthetic high production volume chemical
- Uses
 - Monomer to manufacture polymers (e.g., polyvinyl acetate) for a variety of applications
 - Food additives: vinyl acetate monomer or vinyl acetate-based polymers
- Occurrence and exposure
 - Detected in
 - Environment: air, water, soil and sediment
 - Consumer products: e.g., building materials, food packaging
 - Occupational exposure
 - General population may be exposed to low levels

Reviews by other health agencies

- IARC (1995): Group 2B carcinogen (possibly carcinogenic to humans)
 - Inadequate evidence in humans; limited evidence in experimental animals
 - Considerations:
 - (i) Vinyl acetate is rapidly transformed into acetaldehyde in human blood and animal tissues.
 - (ii) There is sufficient evidence in experimental animals for the carcinogenicity of acetaldehyde (IARC 1987).* Both vinyl acetate and acetaldehyde induce nasal cancer in rats after administration by inhalation.

(iii)Vinyl acetate and acetaldehyde are genotoxic in human cells *in vitro* and in animals *in vivo*.

• ECHA (2011): Category 2 carcinogen (suspected of causing cancer)

* Acetaldehyde is listed as a carcinogen under Proposition 65. IARC: Group 2B with sufficient evidence in experimental animals. NTP: reasonably anticipated to be a human carcinogen.

Epidemiological studies: vinyl acetate and cancer

- Few studies identified
- One study per cancer type
- All studies but one were in workers exposed occupationally
 - Co-exposures include: vinyl chloride, acrylonitrile, 1,3-butadiene, acrylamide, vinylidene chloride, benzene, ethylene oxide, acetaldehyde, styrene, trichloroethane
 - Some increased risks were observed but chance, bias, and confounding are possible

Residential vinyl acetate & breast cancer: Heck et al. (2024)

- Prospective cohort of 48,665 women
- Exposure: residences geocoded to census tracts linked to the National Air Toxics Assessment (NATA)
- Outcome: linkage to CA Cancer Registry

Figure 1. Exposure concentration of vinyl acetate reported in the greater Los Angeles area (Heck et al. 2024)

Residential vinyl acetate & breast cancer: Heck et al. (2024)

		Hazard ratio (95% C
All women		5 27 (4 14-6 73)
Non-smokers	B	4.82 (3.59-6.48)
HR- (ER- AND PR-)		7.09 (5.18-9.7)
HR+ (ER + OR PR+)	B	4.77 (3.7-6.15)
African american	B	11.3 (7.36-17.35)
White	_	5.71 (4.04-8.06)
Latino	_	4.69 (3.32-6.62)
Japanese american		3.81 (2.33-6.24)
Multiple imputation for missing covariate va	alues —	4.28 (3.49-5.25)
Additional adjustment for NOx		5.45 (4.28-6.94)
Non-movers only		6.76 (4.63-9.87)
Movers only	B	5.28 (4.14-6.73)
OF ENVIRONMEN		
	5 10 Risk Estimate	15
No second s	How Estimate	7

Residential vinyl acetate & breast cancer: Heck et al. (2024)

- Strengths
 - Large sample size
 - Prospective cohort
 - Multiethnic population
 - Detailed questionnaire that collected data on multiple covariates
 - Detailed residential histories
- Limitations
 - Air pollution estimates at the census tract level
 - Non-exhaustive list of chemicals
 - Missing potential earlier life exposures

Carcinogenicity Studies in Animals

Animal Carcinogenicity Bioassays

Species	No. of studies	No. of strains	Routes
Rat	16	5	Inhalation (2 studies), Drinking water (14 studies)
Mouse	8	3	Inhalation (2 studies), Drinking water (6 studies)

Vinyl Acetate Animal Studies – Overview

Species	Route	Strain (Sex)	Concentrations (ppm)	Reference
	Inhalation	ation Crl:CD(SD)BR (M, F) 0, 50, 200, 600		Bogdanffy et al. (1994a), Owen (1988)
		Fisher 344 (<mark>M, F</mark>)	0, 1000, 2500	Lijinsky and Reuber (1983), EPL (1982)
Rat	Drinking water	F344/DuCrj (<mark>M, F</mark>)	0, 400, 2000, 10000	Umeda et al. (2004), JBRC (1995)
		SD F ₀ (<mark>M, F</mark>); F ₁ (M, F)	0, 1000, 5000	Minardi et al. (2002)
		Wistar F ₀ (<mark>M, F</mark>); F ₁ (M, F)	0, 1000, 5000	Belpoggi et al. (2002)
		Crl:CD(SD)BR <mark>F₁ (M, F)</mark>	0, 200, 1000, 5000	Bogdanffy et al. (1994b); Shaw (1988)
	Inhalation	Crl:CD-1(ICR)BR (M, F)	0, 50, 200, 600	Bogdanffy et al. (1994a), Owen (1988)
Mouse	Drinking	Crj:BDF1 (M, F)	0, 400, 2000, 10000	Umeda et al. (2004), JBRC (1995)
	water	Swiss F ₀ (M, F); F ₁ (M, F)	0, 1000, 5000	Maltoni et al. (1997)

Vinyl Acetate Animal Studies – Overview

Species	Route	Strain (Sex)	Concentrations (ppm)	Reference
	Inhalation	Crl:CD(SD)BR (M, F)	0, 50, 200, 600	Bogdanffy et al. (1994a), Owen (1988)
	Fisher 344 (M, F)		0, 1000, 2500	Lijinsky and Reuber (1983), EPL (1982)
Rat	Drinking water	F344/DuCrj (M, F)	0, 400, 2000, 10000	Umeda et al. (2004), JBRC (1995)
		SD F ₀ (M, F); F ₁ (M, F)	0, 1000, 5000	Minardi et al. (2002)
		Wistar F ₀ (M, F); F ₁ (M, F)	0, 1000, 5000	Belpoggi et al. (2002)
		Crl:CD(SD)BR F₁ (M , F)	0, 200, 1000, 5000	Bogdanffy et al. (1994b); Shaw (1988)
	Inhalation	Crl:CD-1(ICR)BR (M, F)	0, 50, 200, 600	Bogdanffy et al. (1994a), Owen (1988)
Mouse	Drinking	Crj:BDF1 (M, F)	Crl:CD(SD)BR (M, F) $0, 50, 200, 600$ Fisher 344 (M, F) $0, 1000, 2500$ F344/DuCrj (M, F) $0, 400, 2000, 10000$ D F ₀ (M, F); F ₁ (M, F) $0, 1000, 5000$ star F ₀ (M, F); F ₁ (M, F) $0, 1000, 5000$ rl:CD(SD)BR F ₁ (M, F) $0, 200, 1000, 5000$ rl:CD-1(ICR)BR (M, F) $0, 50, 200, 600$ Crj:BDF1 (M, F) $0, 400, 2000, 10000$ μ iss F ₀ (M, F); F ₁ (M, F) $0, 1000, 5000$	Umeda et al. (2004), JBRC (1995)
	water	Swiss F ₀ (M, F); F ₁ (M, F)	0, 1000, 5000	Maltoni et al. (1997)

Vinyl Acetate Animal Studies – Before and After IARC 1995

Species	Route	Strain (Sex)	Concentrations (ppm)	Reference
	Inhalation	Inhalation Crl:CD(SD)BR (M, F) 0, 50, 200, 600		Bogdanffy et al. (1994a), Owen (1988)
		Fisher 344 (M, F)	0, 1000, 2500	Lijinsky and Reuber (1983), EPL (1982)
Rat	Drinking	F344/DuCrj (M, F)	0, 400, 2000, 10000	Umeda et al. (2004), JBRC (1995)
	water	SD F ₀ (M, F); F ₁ (M, F)	0, 1000, 5000	Minardi et al. (2002)
		Wistar F₀ (M, F); F₁(M, F)	0, 1000, 5000	Belpoggi et al. (2002)
		Crl:CD(SD)BR F ₁ (M, F)	0, 200, 1000, 5000	Bogdanffy et al. (1994b); Shaw (1988)
	Inhalation	Crl:CD-1(ICR)BR (M, F)	0, 50, 200, 600	Bogdanffy et al. (1994a), Owen (1988)
Mouse	Drinking	Crj:BDF1 (M, F)	0, 400, 2000, 10000	Umeda et al. (2004), JBRC (1995)
	water	Swiss F₀ (M, F); F₁(M, F)	0, 1000, 5000	Maltoni et al. (1997)

Tumor Incidence Data

- Tumor site/type, test concentrations, exact trend test values
- Significant increase (* p < 0.05; ** p < 0.01; *** p < 0.001 by Fisher pairwise comparison)
- Dose-related trend (*p* < 0.05)
- Rare tumor (r)

Rat Studies

Tumor incidence: 104-week inhalation study in male Crl:CD(SD)BR rats

(Bogdanffy et al. 1994a; Owen 1988)

Tumor site	Tumor type	Administ	Trend test			
rumor site	runor type	0	istered concentration (ppm) Translam 50 200 600 # 0/28 1/35 4/40 # 0/28 0/35 2/40 # 0/28 0/35 1/40 #	<i>p</i> -value		
	Squamous cell papilloma (r)	0/36	0/28	1/35	4/40	< 0.01
Nasal cavity	Squamous cell carcinoma (r)	0/36	0/28	0/35	2/40	NS
	Carcinoma <i>in situ</i> (r)	0/36	0/28	0/35	1/40	NS
	Total tumors (r)	0/36	0/28	1/35	7/40**	< 0.001

(r), rare tumor; week of first nasal tumor occurrence: 103 weeks **, p < 0.01 by Fisher pairwise comparison; NS, not significant ($p \ge 0.05$)

Tumor incidence: 104-week inhalation study in female Crl:CD(SD)BR rats (Bogdanffy et al. 1994a; Owen 1988)

Tumor		Administe	Trend			
site	Tumor type 0		50	200	600	test <i>p</i> - value
Nasal cavity	Squamous cell carcinoma (r)	0/34	0/37	0/41	4/46	< 0.01

(r), rare tumor; week of first nasal tumor occurrence: 95 weeks

Tumor incidence: 100-week drinking water study in female

Fischer 344 rats (EPL 1982; Lijinsky and Reuber 1983)

Tumor site	Tumor Type	Administere	Trend test		
		0	1000	2500	<i>p</i> -value
Liver	Neoplastic nodule (hepatocellular adenoma)	0/20	0/20	6/20**	< 0.001
	Adenocarcinoma (r)	0/18	1/20	4/20	< 0.05
Uterus	Endometrial stromal polyp	0/18	1/20 4 3/20 5, 2/19 5,	5/20*	< 0.05
	C-cell adenoma	0/17	2/19	5/20*	< 0.05
Uterus Thyroid gland	C-cell carcinoma	1/17	0/19	1/20	NS
Thyrold gland	C-cell adenoma and carcinoma (combined)	1/17	2/19	6/20	< 0.05
Pituitary	Adenoma	6/17	8/19	12/18	< 0.05

(r), rare tumor; *, p < 0.05, **, p < 0.01, Fisher pairwise comparison; NS, not significant ($p \ge 0.05$)

Tumor incidence: 104-week drinking water study in male F344/DuCrj rats (JBRC 1995; Umeda et al. 2004)

		Administ	Trend			
Tumor site	Tumor type	0	400	2000	10000	test <i>p</i> - value
	Squamous cell papilloma (r)	0/50	0/50	0/50	2/50	NS
Oral cavity (and	Squamous cell carcinoma (r)	0/50	0/50	0/50	5/50*	< 0.001
lip mucosa)	Squamous cell papilloma and carcinoma combined (r)	0/50	0/50	0/50	7/50**	< 0.001
Testes	Interstitial cell tumor	42/50	40/50	44/50	47/50	< 0.05

(r), rare tumor; *, p < 0.05, **, p < 0.01, Fisher pairwise comparison; NS, not significant ($p \ge 0.05$)

Tumor incidence: 104-week drinking water study in female F344/DuCrj rats (JBRC 1995; Umeda et al. 2004)

_		Admin	Trend			
Tumor site	Tumor type	Administered concentration (ppm) 0 400 2000 1000 0/50 1/50 1/50 3/50 2/50 7/50 8/50* 5/50 0/50 0/50 1/50 2/50 2/50 7/50 8/50* 5/50 2/50 7/50 9/50* 6/50	10000	test <i>p</i> - value		
Oral cavity (and lip mucosa)	Squamous cell carcinoma (r)	0/50	1/50	1/50	3/50	< 0.05
	C-cell adenoma	2/50	7/50	8/50*	5/50	NS
Thyroid	C-cell carcinoma	0/50	0/50	1/50	2/50	NS
	Combined	2/50	7/50	9/50*	6/50	NS
Mammary gland	Adenocarcinoma	0/50	0/50	0/50	3/50	< 0.05

(r), rare tumor; *, p < 0.05, Fisher pairwise comparison; NS, not significant ($p \ge 0.05$)

Tumor incidence: 104-week drinking water studies in male F₀ and F₁ Sprague-Dawley rats (Minardi et al. 2002)

Study	Tumor site	Tumor type	Administered	Trend test <i>p</i> -		
			0	1000	5000	value
Fo	Pancreas	Islet cell adenoma	0/14	1/13	4/13*	< 0.05
	Oral cavity & lips	Squamous cell carcinoma	2/107	0/83	13/53***	< 0.001
F_1	Forestomach	Squamous cell carcinoma (r)	0/107	6/83**	7/53***	< 0.01
	Pancreas	Exocrine adenoma (r)	0/107	5/83*	1/53	NS

(r), rare tumor; *, p < 0.05, **, p < 0.01, ***, p < 0.001, Fisher pairwise comparison; NS, not significant ($p \ge 0.05$)

Tumor incidence: 104-week drinking water studies in female F₀ and F₁ Sprague-Dawley rats (Minardi et al. 2002)

Study	Tumor site	Tumor type	Administ	Trend test <i>p</i> -		
F ₀			0	1000	5000	value
Fo	Forestomach	Squamous cell carcinoma (r)	0/37	0/37	3/37	< 0.05
	Oral cavity & lips	Squamous cell carcinoma	1/99	0/87	9/57***	< 0.001
	Tongue	Squamous cell carcinoma (r)	0/99	0/87	2/57	NS
F ₁	Forestomach	Squamous cell carcinoma (r)	0/99	3/87	4/57*	< 0.05
	Adrenal gland	Pheochromoblastoma	1/99	6/87*	3/57	NS

(r), rare tumor; *, p < 0.05, ***, p < 0.001, Fisher pairwise comparison; NS, not significant ($p \ge 0.05$)

Tumor incidence: 104-week drinking water study in male F₁ Wistar rats (Belpoggi et al. 2002)

		Administere	Trend		
Tumor site	Tumor type	0	1000	5000	test <i>p</i> - value
Oral cavity & lips	Squamous cell carcinoma	3/86	1/64	12/82**	< 0.001
Pharynx	Carcinoma	0/86	0/64	3/82	< 0.05
Esophagus	Squamous cell carcinoma	0/86	0/64	3/82	< 0.05
Forestomach	Squamous cell carcinoma	0/86	0/64	4/82	< 0.05
Pancreas	Exocrine adenoma	6/86	14/64**	4/82	NS
Adrenal gland Pheochromoblastoma		0/86	1/64	5/82*	0.01

*, p < 0.05, **, p < 0.01, Fisher pairwise comparison; NS, not significant ($p \ge 0.05$)

Tumor incidence: 104-week drinking water study in female F₀ Wistar rats (Belpoggi et al. 2002)

	Turnerite	Turner	Administered	Trend test		
	lumor site	Tumor type	0	1000	5000	<i>p</i> -value
	Hemolympho- reticular tissues	Lymphoma and leukemia	1/37	3/37	6/37	< 0.05
Fo	Fo Adrenal gland Pheochromocytoma		5/37	14/37*	6/37	NS
	Uterus	Fibrosarcoma	0/37	0/37	3/37	< 0.05

*, p < 0.05, Fisher pairwise comparison; NS, not significant ($p \ge 0.05$)

Tumor incidence: 104-week drinking water study in female F₁ Wistar rats (Belpoggi et al. 2002)

	Turnersite	Turne or three o	Administer	Trend test		
	lumor site	Tumor type	0	1000	5000	<i>p</i> -value
	Hemolympho-	Lymphoma and leukemia	3/69	5/73	14/95*	< 0.01
	Oral cavity & lips	Squamous cell carcinoma	5/69	11/73	24/95**	< 0.01
F ₁	Tongue	Squamous cell carcinoma	0/69	0/73	6/95*	< 0.01
-	Esophagus	Squamous cell carcinoma	0/69	1/73	4/95	< 0.05
	Forestomach	Squamous cell carcinoma	0/69	0/73	4/95	< 0.05
	Uterus	Adenocarcinoma	4/69	5/73	19/95**	0.001

*, *p* < 0.05, **, *p* < 0.01, Fisher pairwise comparison

104-week drinking water studies in male and female F₁ Crl:CD(SD)BR rats (Bogdanffy et al. 1994b; Shaw 1988)

- F₁ animals (60 rats/group) were exposed to VA throughout all life stages (preconception, *in utero*, and continuing after birth) until 104 weeks of age.
- Administered concentrations are 0, 200, 1000, 5000 ppm to F_0 and F_1 .
- In F₁ males, two rare squamous carcinomas of the oral cavity were observed in the 5000 ppm group.
- In F₁ females, no treatment-related tumor findings were observed.

Mouse Studies

Tumor incidence: 104-week drinking water study in male Crj:BDF1 mice (JBRC 1995; Umeda et al. 2004)

Tumor sito	Tumor typo	Admir	Trend test			
Tumor site	тапют туре	0	400	2000	10000	<i>p</i> -value
Oral cavity	Squamous cell papilloma (r)	0/50	0/50	0/50	4/50	< 0.01
(including lip	Squamous cell carcinoma (r)	0/50	0/50	0/50	13/50***	< 0.001
mucosa)	Combined (r)	0/50	0/50	0/50	16/50***	< 0.001
Larynx	Squamous cell papilloma (r)	0/50	0/50	0/50	2/50	NS
Esophagus	Squamous cell carcinoma (r)	0/50	0/50	0/50	7/50**	< 0.001
	Squamous cell papilloma (r)	0/50	0/50	0/50	2/50	NS
Forestomach	Squamous cell carcinoma (r)	1/50	0/50	0/50	7/50*	< 0.001
	Combined (r)	1/50	0/50	0/50	9/50**	< 0.001

(r), rare tumor; *, *p* < 0.05, **, *p* < 0.01, ***, *p* < 0.001, Fisher pairwise comparison; NS, not significant (*p* ≥ 0.05)

Tumor incidence: 104-week drinking water study in female

Crj:BDF1 mice (JBRC 1995; Umeda et al. 2004)

Tumor cito	Tumor tuno	Admin	Trend			
Tumor site	rumor type	0	400	2000	10000	value
Oral cavity	Squamous cell papilloma (r)	0/50	0/50	0/50	3/50	< 0.05
(including lip	Squamous cell carcinoma (r)	0/50	0/50	0/50	15/50***	< 0.001
mucosa)	Combined (r)	0/50	0/50	0/50	18/50***	< 0.001
	Squamous cell papilloma (r)	0/50	0/50	0/50	1/50	NS
Forestomach	Squamous cell carcinoma (r)	0/50	0/50	0/50	3/50	< 0.05
	Combined (r)	0/50	0/50	0/50	4/50	< 0.01
Spleen	Malignant lymphoma	0/50	5/50*	1/50	1/50	NS

(r), rare tumor; *, p < 0.05, ***, p < 0.001, Fisher pairwise comparison; NS, not significant ($p \ge 0.05$)

Tumor incidence: 78-week drinking water study in male F₁ Swiss mice (Maltoni et al. 1997)

Tumor cito	Tumor typo	Administer	Trend test		
Tumor site	rumor type	0	1000	5000	<i>p</i> -value
Oral cavity	Squamous cell carcinoma	0/38	0/37	10/49**	< 0.001
Tongue	Squamous cell carcinoma	1/38	0/37	7/49	< 0.01
Esophagus	Squamous cell carcinoma	0/38	0/37	12/49***	< 0.001
Forestomach	Acanthoma	0/38	1/37	8/49**	< 0.01

, *p* < 0.01, *, *p* < 0.001, Fisher pairwise comparison

Tumor incidence: 78-week drinking water studies in female F₀ and F₁ Swiss mice (Maltoni et al. 1997)

	Tumor site	Tumortumo	Administered	Trend test		
	rumor site	0		1000	5000	<i>p</i> -value
	Esophagus	Squamous cell carcinoma	0/37	0/37	6/37*	0.001
Fo		Acanthoma	0/37	0/37	5/37*	< 0.01
	Forestomach	Squamous cell carcinoma	0/37	0/37	3/37	< 0.05

*, *p* < 0.05, Fisher pairwise comparison

Tumor incidence: 78-week drinking water studies in female F₀ and F₁ Swiss mice (Maltoni et al. 1997, continued)

	Turnersite	Turne or there o	Administe	Trend test		
	Tumor site	lumor type	0	1000	5000	<i>p</i> -value
	Oral cavity Squamous cell carcinoma		0/48	0/44	9/48**	< 0.001
	Tongue	Squamous cell carcinoma	0/48	0/44	12/48***	< 0.001
	Franksaus	Acanthoma	0/48	0/44	3/48	< 0.05
	Esophagus	Squamous cell carcinoma	0/48	0/44	18/48***	< 0.001
_	Forestomach	Acanthoma	0/48	0/44	11/48***	< 0.001
F ₁		Squamous cell carcinoma	0/48	0/44	7/48**	< 0.001
	Uterus	Leiomyosarcoma	0/48	2/44	4/48	< 0.05
	Lung	Adenoma	6/48	3/44	11/48	< 0.05
	Mammary gland Liposarcoma		0/48	0/44	3/48	< 0.05
	Zymbal gland	Carcinoma	0/48	2/44	4/48	< 0.05

, *p* < 0.01, *, *p* < 0.001, Fisher pairwise comparison

Summary of Animal Tumor Findings

M, male; F, female; ^r, Rare

System	Tumor site	Crl:CD(SD)BR rat	SD rat	Fischer 344 rat	F344/DuCrj rat	Wistar rat	Swiss mouse	Crj:BDF1 mouse
	Nasal cavity	Mr, Fr						
Respiratory	Larynx	F						Mr
	Other sites					M (Pharynx)	F (Lung)	
	Oral cavity		M , F		Mr, Fr	M , F	M , F	Mr, Fr
	Tongue		F			F	M, F	
Digostivo	Esophagus					M, F	M , F	Mr
Digestive	Forestomach		Mr, Fr			M, F	M , F	Mr, F ^r
	Liver			F				
	Pancreas		Mr			M		
	Adrenal gland		F			M , F		
Endocrine	Thyroid gland			F	F			
	Pituitary gland			F				
Reproductive	Uterus			Fr		F	F	
	Mammary gland				F		F	
	Testes				M			
Auditory	Zymbal Gland						F	
Immune	Hemolymphoreticular					F		F

Pharmacokinetics and Metabolism

- Fast absorption & distribution throughout the body
- Rapid excretion within 24 hours: expired air, urine and feces
- Two key enzymes:
 - Carboxylesterases (CES):
 - Vinyl acetate

 acetic acid and acetaldehyde (genotoxic carcinogen)
 - Aldehyde dehydrogenase 2 (ALDH2)
 - Acetaldehyde → acetic acid
- Other metabolic reactions

ALDH2 rs671 Polymorphism

- Partial or complete loss of function
 - ALDH2 *1/*1, full activity
 - ALDH2 *1/*2, intermediate activity
 - ALDH2 *2/*2, no activity
 - "Alcohol flushing syndrome"
 - ALDH2 *2 is common in East Asian populations Up to 40% heterozygous ALDH2 *1/*2
 - 5–10% being homozygous ALDH2 *2/*2
 - Reduced or non-functioning ALDH2 variants can result in significant build-up of acetaldehyde

• Estimated 1 million people in California may be affected

Key Characteristics of Carcinogens

Images of the KCs are adapted from Guyton et al. (2018) & Smith et al. (2020) with modifications. See also Preamble to the IARC monographs (IARC 2019).

KC 1: Is Electrophilic or Can Be Metabolically Activated

- Formation of DNA adducts *in vivo* in rats treated with vinyl acetate: [¹³C₂]-N²-Ethyl-dG in nasal respiratory and olfactory epithelia, peripheral blood mononuclear cells
 - No adducts were observed in liver, brain, or bone marrow
- Electrophilic and reactive metabolite: Acetaldehyde
 - Acetaldehyde binds directly to DNA, forming
 - N²-Ethyl-dG
 - 1, N²-propano-dG
 - NεG

KC 2: Is Genotoxic

Chromosomal effects

- \uparrow in sister chromatid exchanges in animal *in vitro* studies

DNA damage

- ↑ DNA-crosslinks in human leucocytes in vitro
- 个 DNA-protein crosslinks in rat nasal epithelial cells *in vitro* and plasmid DNA and calf thymus histones with incubated rat liver microsomes

KC 2: Is Genotoxic (continued)

Mutations

- \uparrow in mouse lymphoma cells *in vitro* at *TK* locus with and without S9
- No mutagenic activity was observed in tests conducted in multiple Salmonella typhimurium strains or two E. coli strains

KC 10: Alters Cell Proliferation, Cell Death, or Nutrient Supply

- \uparrow Cell Proliferation
 - Male rats: nasal cavity epithelium, nasal olfactory epithelium, and oral cavity maxillary mucosa
 - Male mice: basal cells of the mandibular oral cavity mucosa
- ↑ Hyperplasia
 - Male and female rats: basal cell hyperplasia of the nose
 - Female rats: thyroid gland C-cell hyperplasia, hyperplasia of the esophagus and stomach
 - Male and female mice: tracheal epithelial hyperplasia, submucosal gland hyperplasia, basal and squamous cell hyperplasia in the oral cavity and esophagus
- ↑ Dysplasia
 - Male and female F_0 mice: squamous cell dysplasia of the esophagus
 - Female F₁ mice: squamous cell dysplasia of the tongue, esophagus, and Zymbal gland

Similarities between Vinyl Acetate and Acetaldehyde: Carcinogenicity and Genotoxicity

Shared Tumor Findings

		Vinyl Acetate		Acetaldehyde
Inhalation	•	Nasal tumors in rats	•	Nasal tumors in rats
	•	Laryngeal tumors in rats	٠	Laryngeal tumors in hamsters
Drinking	•	Hemolymphoreticular cancer in rats	•	Hemolymphoreticular cancer in rats
water		(leukemia and lymphoma combined)		(leukemia and lymphoma combined)
	•	Pancreatic tumors in rats (islet cell adenoma and exocrine adenoma)	•	Pancreatic tumors in rats (islet cell adenoma)
	•	Mammary gland tumors in rats (adenocarcinoma) and mice (liposarcoma)	•	Mammary gland tumors in rats (benign fibroma or fibroadenoma)
	•	And many more sites	•	Nasal cavity tumors in rats (carcinoma) Bone tumors in rats (osteosarcoma)

Shared Genotoxic Effects between Vinyl Acetate and Acetaldehyde

- Micronuclei, chromosomal aberrations, and sister chromatid exchanges in rodents *in vivo* and human and rodent cells *in vitro*
- Form N2-Ethyl-dG DNA adducts and DNA crosslinks
- TK locus mutations in human and mouse cells in vitro

